文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有优异电催化析氢反应活性的原子精确AuPt(硫醇盐)(二硫醇盐)纳米团簇

Atomically Precise AuPt(thiolate)(dithiolate) Nanoclusters with Excellent Electrocatalytic Hydrogen Evolution Reactivity.

作者信息

Sera Miyu, Hossain Sakiat, Yoshikawa Sara, Takemae Kana, Ikeda Ayaka, Tanaka Tomoya, Kosaka Taiga, Niihori Yoshiki, Kawawaki Tokuhisa, Negishi Yuichi

机构信息

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

出版信息

J Am Chem Soc. 2024 Oct 30;146(43):29684-29693. doi: 10.1021/jacs.4c10868. Epub 2024 Oct 15.


DOI:10.1021/jacs.4c10868
PMID:39405364
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11613320/
Abstract

[AuPt(C6)] (C6 = 1-hexanethiolate) is twice as active as commercial Pt nanoparticles in promoting the electrocatalytic hydrogen evolution reaction (HER), thereby attracting attention as new HER catalysts with well-controlled geometric structures. In this study, we succeeded in synthesizing two new Au-Pt alloy nanoclusters, namely, [AuPt(TBBT)(TDT)] (TBBT = 4--butylbenzenethiolate; TDT = thiodithiolate) and [AuPt(TBBT)(PDT)] (PDT = 1,3-propanedithiolate), by exchanging all the ligands of [AuPt(PET)] (PET = 2-phenylethanethiolate) with mono- or dithiolates. Although [AuPt(TBBT)(TDT)] was synthesized serendipitously, a similar cluster, [AuPt(TBBT)(PDT)], was subsequently obtained by selecting the appropriate reaction conditions and optimal combination of thiolate and dithiolate ligands. Single crystal X-ray diffraction analyses revealed that the lengths and orientations of -Au(I)-SR-Au(I)- staples in [AuPt(TBBT)(TDT)] and [AuPt(TBBT)(PDT)] were different from those in [AuPt(C6)], [AuPt(PET)], and [AuPt(TBBT)], and these subtle differences were reflected in the geometric and electronic structures as well as the HER activities of [AuPt(TBBT)(TDT)] and [AuPt(TBBT)(PDT)]. Accordingly, the HER activities of products [AuPt(TBBT)(TDT)] and [AuPt(TBBT)(PDT)] were, respectively, 3.5 and 4.9 times higher than those of [AuPt(C6)] and [AuPt(TBBT)].

摘要

[AuPt(C6)](C6 = 己硫醇盐)在促进电催化析氢反应(HER)方面的活性是商业铂纳米颗粒的两倍,因此作为具有良好控制几何结构的新型HER催化剂受到关注。在本研究中,我们通过用单硫醇盐或二硫醇盐交换[AuPt(PET)](PET = 苯乙硫醇盐)的所有配体,成功合成了两种新的金 - 铂合金纳米团簇,即[AuPt(TBBT)(TDT)](TBBT = 对叔丁基苯硫醇盐;TDT = 硫代二硫醇盐)和[AuPt(TBBT)(PDT)](PDT = 1,3 - 丙二硫醇盐)。虽然[AuPt(TBBT)(TDT)]是偶然合成的,但随后通过选择合适的反应条件以及硫醇盐和二硫醇盐配体的最佳组合获得了类似的团簇[AuPt(TBBT)(PDT)]。单晶X射线衍射分析表明,[AuPt(TBBT)(TDT)]和[AuPt(TBBT)(PDT)]中 -Au(I)-SR-Au(I)- 主链的长度和取向与[AuPt(C6)]、[AuPt(PET)]和[AuPt(TBBT)]中的不同,这些细微差异反映在[AuPt(TBBT)(TDT)]和[AuPt(TBBT)(PDT)]的几何和电子结构以及HER活性中。因此,产物[AuPt(TBBT)(TDT)]和[AuPt(TBBT)(PDT)]的HER活性分别比[AuPt(C6)]和[AuPt(TBBT)]高3.5倍和4.9倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/43922f7a935b/ja4c10868_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/578159ce542b/ja4c10868_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/733a5a6e1a1b/ja4c10868_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/70f868e4ef14/ja4c10868_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/3ea8a12f025f/ja4c10868_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/933b6ccc26cb/ja4c10868_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/8c5b5002860b/ja4c10868_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/43922f7a935b/ja4c10868_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/578159ce542b/ja4c10868_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/733a5a6e1a1b/ja4c10868_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/70f868e4ef14/ja4c10868_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/3ea8a12f025f/ja4c10868_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/933b6ccc26cb/ja4c10868_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/8c5b5002860b/ja4c10868_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11613320/43922f7a935b/ja4c10868_0006.jpg

相似文献

[1]
Atomically Precise AuPt(thiolate)(dithiolate) Nanoclusters with Excellent Electrocatalytic Hydrogen Evolution Reactivity.

J Am Chem Soc. 2024-10-30

[2]
Elucidating ligand effects in thiolate-protected metal clusters using AuPt(TBBT) as a model cluster.

Nanoscale. 2019-11-21

[3]
Aromatic Thiolate-Protected Series of Gold Nanomolecules and a Contrary Structural Trend in Size Evolution.

Acc Chem Res. 2018-8-21

[4]
Quantitatively Monitoring the Size-Focusing of Au Nanoclusters and Revealing What Promotes the Size Transformation from Au(TBBT) to Au(TBBT).

Anal Chem. 2016-11-8

[5]
Controlling magnetism of Au(TBBT) nanoclusters at single electron level and implication for nonmetal to metal transition.

Chem Sci. 2019-9-4

[6]
Characterization of Pt-doping effects on nanoparticle emission: a theoretical look at AuPt(SH) and AuPt(SCH).

Faraday Discuss. 2023-1-31

[7]
Phosphine-Triggered Structural Defects in Au Homologues Boost Electrocatalytic CO Reduction.

Angew Chem Int Ed Engl. 2023-8-14

[8]
Selective formation of [Au(SPh Bu)], [AuPd(SPh Bu)] and [AuPt(SCHPh)(SPh Bu)] by controlling ligand-exchange reaction.

Chem Sci. 2022-3-30

[9]
Structure of Chiral Au44(2,4-DMBT)26 Nanocluster with an 18-Electron Shell Closure.

J Am Chem Soc. 2016-8-10

[10]
Is the kernel-staples match a key-lock match?

Chem Sci. 2018-1-29

引用本文的文献

[1]
Synergistic effects of atomically precise Au-based bimetallic nanocluster on energy-related small molecule catalysis.

Chem Sci. 2025-4-30

[2]
Deciphering Electrocatalytic Activity in Cu Nanoclusters: Interplay Between Structural Confinement and Ligands Environment.

Small. 2025-6

[3]
Enhancement of Photoluminescence Quantum Yield of Silver Clusters by Heavy Atom Effect.

Small. 2025-6

本文引用的文献

[1]
Combined experimental and computational study of the photoabsorption of the monodoped and nondoped nanoclusters AuPt(SR), AgPt(SR), and Ag(SR).

Phys Chem Chem Phys. 2024-6-26

[2]
Chemical Flexibility of Atomically Precise Metal Clusters.

Chem Rev. 2024-6-12

[3]
Regulating the Electronic Structure of Metal Nanoclusters by Longitudinal Single-Dithiolate Substitution.

J Phys Chem Lett. 2023-4-6

[4]
Mechanism of Cations Suppressing Proton Diffusion Kinetics for Electrocatalysis.

Angew Chem Int Ed Engl. 2023-3-27

[5]
Selective formation of [Au(SPh Bu)], [AuPd(SPh Bu)] and [AuPt(SCHPh)(SPh Bu)] by controlling ligand-exchange reaction.

Chem Sci. 2022-3-30

[6]
Resolving the Structural Debate for the Hydrated Excess Proton in Water.

J Am Chem Soc. 2021-11-10

[7]
Self-promoted solid-state covalent networking of Au(SR) through reversible disulfide bonds. A critical effect of the nanocluster in oxidation processes.

Nanoscale. 2021-6-14

[8]
Cluster From Cluster: A Quantitative Approach to Magic Gold Nanoclusters [Au (SR) ].

Angew Chem Int Ed Engl. 2021-6-21

[9]
Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures.

Chem Rev. 2021-1-27

[10]
Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences.

Nanoscale. 2020-5-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索