Suppr超能文献

用于光辅助全水分解的整体集成电极中的定向电荷转移通道。

Directional Charge Transfer Channels in a Monolithically Integrated Electrode for Photoassisted Overall Water Splitting.

机构信息

Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China.

School of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China.

出版信息

ACS Nano. 2023 Feb 28;17(4):3465-3482. doi: 10.1021/acsnano.2c09659. Epub 2023 Feb 10.

Abstract

Photoelectrocatalytic performance of a system is fundamentally determined by the full absorption of sunlight and high utilization of photoexcited carriers, but efficiency of the latter is largely limited by inefficient charge transfer from the absorber to reactive sites. Here, we propose to construct directional charge transfer channels in a monolithically integrated electrode, taking carbon dots/carbon nitride (CCN) nanotubes and FeOOH/FeCo layered double hydroxide (FFC) nanosheets as a representative, to boost the photoassisted overall water splitting performance. Detailed experimental investigations and DFT calculations demonstrate that the interfacial C-O-Fe bonds between CCN and FFC act as charge transfer channels, facilitating the directional migration of the photogenerated carriers between CCN and FFC surfaces. Moreover, the in situ oxidized Fe/Co species by photogenerated holes trigger lattice oxygen activation, realizing the construction of the Fe-Co dual-site as the catalytic center and efficiently lowering the barrier energy for water oxidation. As a result, the CCN@FFC electrode shows multiple functionalities in photoelectrocatalysis: only a low overpotential of 68 mV, 182 mV, and 1.435 V is required to deliver 10 mA cm current densities for the photoassisted HER, OER, and overall water splitting, respectively. This directional charge transfer modulation strategy may facilitate the design of highly active and cost-effective multifunctional catalysts for energy conversion and storage.

摘要

光电催化性能从根本上取决于对太阳光的充分吸收和对光激发载流子的高效利用,但后者的效率在很大程度上受到从吸收体到反应位点的低效电荷转移的限制。在这里,我们提出在整体集成电极中构建定向电荷转移通道,以碳点/氮化碳(CCN)纳米管和 FeOOH/FeCo 层状双氢氧化物(FFC)纳米片为代表,以提高光辅助整体水分解性能。详细的实验研究和 DFT 计算表明,CCN 和 FFC 之间的界面 C-O-Fe 键作为电荷转移通道,促进了光生载流子在 CCN 和 FFC 表面之间的定向迁移。此外,光生空穴原位氧化的 Fe/Co 物种触发晶格氧活化,实现了 Fe-Co 双位点作为催化中心的构建,并有效地降低了水氧化的势垒能。结果,CCN@FFC 电极在光电催化中表现出多种功能:仅需 68 mV、182 mV 和 1.435 V 的超电势即可分别提供 10 mA cm 的光辅助 HER、OER 和整体水分解的电流密度。这种定向电荷转移调制策略可能有助于设计高效且具有成本效益的多功能催化剂,用于能量转换和存储。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验