Suppr超能文献

用于光电化学水分解的双功能CoO/g-CN异质结构

Bifunctional CoO/g-CN Hetrostructures for Photoelectrochemical Water Splitting.

作者信息

Shabbir Syeda Ammara, Ali Iqra, Haris Muhammad, Latif Hamid, Sabah Aneeqa, Alshomrany Ali S, Bakkour Youssef

机构信息

Department of Physics, Forman Christian College (A Chartered University), Lahore 54600, Pakistan.

Institute of Materials Science Kaunas, University of Technology, Kaunas 51423, Lithuania.

出版信息

ACS Omega. 2024 Apr 29;9(19):21450-21458. doi: 10.1021/acsomega.4c01677. eCollection 2024 May 14.

Abstract

This study explored the synergistic potential of photoelectrochemical water splitting through bifunctional CoO/g-CN heterostructures. This novel approach merged solar panel technology with electrochemical cell technology, obviating the need for external voltage from batteries. Scanning electron microscopy and X-ray diffraction were utilized to confirm the surface morphology and crystal structure of fabricated nanocomposites; CoO, CoO/g-CN, and CoO/Cg-CN. The incorporation of carbon into g-CN resulted in improved catalytic activity and charge transport properties during the visible light-driven hydrogen evolution reaction and oxygen evolution reaction. Optical properties were examined using UV-visible spectroscopy, revealing a maximum absorption edge at 650 nm corresponding to a band gap of 1.31 eV for CoO/Cg-CN resulting in enhanced light absorption. Among the three fabricated electrodes, CoO/Cg-CN exhibited a significantly lower overpotential of 30 mV and a minimum Tafel slope of 112 mV/dec This enhanced photoelectrochemical efficiency was found due to the established Z scheme heterojunction between CoO and gCN. This heterojunction reduced the recombination of photogenerated electron-hole pairs and thus promoted charge separation by extending visible light absorption range chronoamperometric measurements confirmed the steady current flow over time under constant potential from the solar cell, and thus it provided the effective utilization of bifunctional CoO/g-CN heterostructures for efficient solar-driven water splitting.

摘要

本研究探索了通过双功能CoO/g-CN异质结构实现光电化学水分解的协同潜力。这种新方法将太阳能电池板技术与电化学电池技术相结合,无需电池提供外部电压。利用扫描电子显微镜和X射线衍射来确认制备的纳米复合材料CoO、CoO/g-CN和CoO/Cg-CN的表面形态和晶体结构。在g-CN中引入碳提高了可见光驱动析氢反应和析氧反应过程中的催化活性和电荷传输性能。使用紫外-可见光谱对光学性质进行了检测,结果表明CoO/Cg-CN在650 nm处有最大吸收边,对应带隙为1.31 eV,从而增强了光吸收。在制备的三个电极中,CoO/Cg-CN的过电位显著降低至30 mV,塔菲尔斜率最小,为112 mV/dec。这种增强的光电化学效率归因于CoO和gCN之间形成的Z型异质结。这种异质结减少了光生电子-空穴对的复合,从而通过扩大可见光吸收范围促进了电荷分离。计时电流法测量证实了在太阳能电池恒定电位下随时间的稳定电流流动,因此它为高效太阳能驱动水分解有效利用双功能CoO/g-CN异质结构提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418c/11097156/4babcbba2467/ao4c01677_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验