Department of Physics, Harbin Institute of Technology, Harbin 150001, China.
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
Phys Rev Lett. 2023 Jan 20;130(3):030603. doi: 10.1103/PhysRevLett.130.030603.
Gate-based quantum computation has been extensively investigated using quantum circuits based on qubits. In many cases, such qubits are actually made out of multilevel systems but with only two states being used for computational purpose. While such a strategy has the advantage of being in line with the common binary logic, it in some sense wastes the ready-for-use resources in the large Hilbert space of these intrinsic multidimensional systems. Quantum computation beyond qubits (e.g., using qutrits or qudits) has thus been discussed and argued to be more efficient than its qubit counterpart in certain scenarios. However, one of the essential elements for qutrit-based quantum computation, two-qutrit quantum gate, remains a major challenge. In this Letter, we propose and demonstrate a highly efficient and scalable two-qutrit quantum gate in superconducting quantum circuits. Using a tunable coupler to control the cross-Kerr coupling between two qutrits, our scheme realizes a two-qutrit conditional phase gate with fidelity 89.3% by combining simple pulses applied to the coupler with single-qutrit operations. We further use such a two-qutrit gate to prepare an EPR state of two qutrits with a fidelity of 95.5%. Our scheme takes advantage of a tunable qutrit-qutrit coupling with a large on:off ratio. It therefore offers both high efficiency and low crosstalk between qutrits, thus being friendly for scaling up. Our Letter constitutes an important step toward scalable qutrit-based quantum computation.
基于门的量子计算已经在基于量子比特的量子电路中得到了广泛的研究。在许多情况下,这些量子比特实际上是由多能级系统构成的,但仅使用两个状态用于计算目的。虽然这种策略具有与常见二进制逻辑一致的优势,但在某种意义上,它浪费了这些固有多维系统的大 Hilbert 空间中可用于计算的资源。因此,已经讨论并认为量子比特之外的量子计算(例如,使用三量子比特或量子比特)在某些情况下比其量子比特对应物更有效。然而,基于三量子比特的量子计算的一个基本要素,即两量子比特量子门,仍然是一个主要挑战。在这篇文章中,我们提出并演示了超导量子电路中一种高效且可扩展的两量子比特量子门。我们使用可调谐耦合器来控制两个量子比特之间的交叉克尔耦合,通过将施加于耦合器的简单脉冲与单量子比特操作相结合,我们的方案实现了具有 89.3%保真度的两量子比特条件相位门。我们进一步使用这种两量子比特门来制备两个量子比特的 EPR 态,保真度为 95.5%。我们的方案利用了具有大 ON:OFF 比的可调谐量子比特-量子比特耦合。因此,它具有高效率和量子比特之间的低串扰,因此非常适合扩展。这篇文章标志着可扩展的基于量子比特的量子计算迈出了重要的一步。