Nguyen Long B, Goss Noah, Siva Karthik, Kim Yosep, Younis Ed, Qing Bingcheng, Hashim Akel, Santiago David I, Siddiqi Irfan
Department of Physics, University of California, Berkeley, CA, USA.
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Commun. 2024 Aug 19;15(1):7117. doi: 10.1038/s41467-024-51434-2.
High-dimensional quantum information processing has emerged as a promising avenue to transcend hardware limitations and advance the frontiers of quantum technologies. Harnessing the untapped potential of the so-called qudits necessitates the development of quantum protocols beyond the established qubit methodologies. Here, we present a robust, hardware-efficient, and scalable approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions. We then utilize them to construct extensible multi-qubit operations, realize highly entangled multidimensional states including atomic squeezed states and Schrödinger cat states, and implement programmable entanglement distribution along a qudit array. Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications such as quantum sensing and fault-tolerant quantum computing.
高维量子信息处理已成为超越硬件限制、推进量子技术前沿的一条有前景的途径。利用所谓的量子元(qudits)尚未开发的潜力需要开发超越既定量子比特方法的量子协议。在此,我们提出一种稳健、硬件高效且可扩展的方法,用于利用拉曼辅助双光子相互作用来操作多维固态系统。然后,我们利用这些系统构建可扩展的多量子比特操作,实现包括原子压缩态和薛定谔猫态在内的高度纠缠多维态,并沿量子元阵列实现可编程纠缠分布。我们的工作阐明了强驱动多量子元系统的量子电动力学,并为量子传感和容错量子计算等高维量子应用的未来发展提供了实验基础。