Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, People's Republic of China.
Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
Phys Rev Lett. 2023 Jan 27;130(4):048201. doi: 10.1103/PhysRevLett.130.048201.
Biological functions in living systems are closely related to their geometries and morphologies. Toroidal structures, which widely exist in nature, present interesting features containing positive, zero, and negative Gaussian curvatures within one system. Such varying curvatures would significantly affect the growing or dehydrating morphogenesis, as observed in various intricate patterns in abundant biological structures. To understand the underlying morphoelastic mechanism and to determine the crucial factors that govern the patterning in toroidal structures, we develop a core-shell model and derive a scaling law to characterize growth- or dehydration-induced instability patterns. We find that the eventual patterns are mainly determined by two dimensionless parameters that are composed of stiffness and curvature of the system. Moreover, we construct a phase diagram showing the multiphase wrinkling pattern selection in various toroidal structures in terms of these two parameters, which is confirmed by our experimental observations. Physical insights into the multiphase transitions and existence of bistable modes are further provided by identifying hysteresis loops and the Maxwell equal-energy conditions. The universal law for morphology selection on core shell structures with varying curvatures can fundamentally explain and precisely predict wrinkling patterns of diverse toroidal structures, which may also provide a platform to design morphology-related functional surfaces.
生物体系中的生物学功能与其几何形状和形态密切相关。环面结构在自然界中广泛存在,呈现出有趣的特征,即在一个系统中包含正、零和负高斯曲率。这种变化的曲率会显著影响生长或脱水形态发生,正如在各种复杂的生物结构中观察到的那样。为了理解潜在的形态弹性机制,并确定控制环面结构中图案形成的关键因素,我们开发了一个核壳模型,并推导出一个标度律来描述生长或脱水诱导的不稳定性图案。我们发现,最终的图案主要由两个无量纲参数决定,这两个参数由系统的刚度和曲率组成。此外,我们构建了一个相图,根据这两个参数展示了各种环面结构中的多相起皱模式选择,这通过我们的实验观察得到了证实。通过识别滞后回线和麦克斯韦等能量条件,进一步提供了对多相转变和双稳态模式存在的物理理解。具有变化曲率的核壳结构的形态选择的普遍规律,可以从根本上解释和精确预测各种环面结构的起皱模式,这也可能为设计与形态相关的功能表面提供一个平台。