Suppr超能文献

具有血期和肝期抗疟活性的快速杀伤型酪氨酸酰胺 ((()-SW228703)) 与环胺抗性基因座 (CARL) 相关。

Fast-Killing Tyrosine Amide (()-SW228703) with Blood- and Liver-Stage Antimalarial Activity Associated with the Cyclic Amine Resistance Locus (CARL).

机构信息

Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States.

Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.

出版信息

ACS Infect Dis. 2023 Mar 10;9(3):527-539. doi: 10.1021/acsinfecdis.2c00527. Epub 2023 Feb 10.

Abstract

Current malaria treatments are threatened by drug resistance, and new drugs are urgently needed. In a phenotypic screen for new antimalarials, we identified ()-SW228703 (()-SW703), a tyrosine amide with asexual blood and liver stage activity and a fast-killing profile. Resistance to ()-SW703 is associated with mutations in the cyclic amine resistance locus (CARL) and acetyl CoA transporter (ACT), similarly to several other compounds that share features such as fast activity and liver-stage activity. Compounds with these resistance mechanisms are thought to act in the ER, though their targets are unknown. The tyramine of ()-SW703 is shared with some reported CARL-associated compounds; however, we observed that strict S-stereochemistry was required for the activity of ()-SW703, suggesting differences in the mechanism of action or binding mode. ()-SW703 provides a new chemical series with broad activity for multiple life-cycle stages and a fast-killing mechanism of action, available for lead optimization to generate new treatments for malaria.

摘要

目前的疟疾治疗方法受到耐药性的威胁,急需新的药物。在针对新抗疟药物的表型筛选中,我们发现了()-SW228703(()-SW703),这是一种具有无性血期和肝期活性以及快速杀伤特性的酪氨酸酰胺。()-SW703 的耐药性与环状胺耐药基因座(CARL)和乙酰辅酶 A 转运蛋白(ACT)的突变有关,与其他几种具有快速活性和肝期活性等特征的化合物相似。具有这些耐药机制的化合物被认为在 ER 中起作用,尽管它们的靶标尚不清楚。()-SW703 的酪胺与一些报道的与 CARL 相关的化合物共享;然而,我们观察到()-SW703 的活性需要严格的 S-立体化学,这表明作用机制或结合模式存在差异。()-SW703 提供了一个具有广泛活性的新化学系列,针对多个生命周期阶段,具有快速杀伤作用机制,可用于先导化合物优化,以开发治疗疟疾的新疗法。

相似文献

2
Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes.
ACS Infect Dis. 2016 Nov 11;2(11):816-826. doi: 10.1021/acsinfecdis.6b00025. Epub 2016 Apr 7.
5
susceptibilities to ganaplacide and diversity in potential resistance mediators in Ugandan isolates.
Antimicrob Agents Chemother. 2024 Sep 4;68(9):e0046624. doi: 10.1128/aac.00466-24. Epub 2024 Aug 13.
7
A New Thienopyrimidinone Chemotype Shows Multistage Activity against Plasmodium falciparum, Including Artemisinin-Resistant Parasites.
Microbiol Spectr. 2021 Oct 31;9(2):e0027421. doi: 10.1128/Spectrum.00274-21. Epub 2021 Sep 29.

引用本文的文献

1
A genome-scale drug discovery pipeline uncovers therapeutic targets and a unique p97 allosteric binding site in .
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2505710122. doi: 10.1073/pnas.2505710122. Epub 2025 Aug 29.
3
Plasmodium SEY1 is a novel druggable target that contributes to imidazolopiperazine mechanism of action.
Res Sq. 2024 Sep 23:rs.3.rs-4892449. doi: 10.21203/rs.3.rs-4892449/v1.
4
susceptibilities to ganaplacide and diversity in potential resistance mediators in Ugandan isolates.
Antimicrob Agents Chemother. 2024 Sep 4;68(9):e0046624. doi: 10.1128/aac.00466-24. Epub 2024 Aug 13.
5
Identification of potent and reversible piperidine carboxamides that are species-selective orally active proteasome inhibitors to treat malaria.
Cell Chem Biol. 2024 Aug 15;31(8):1503-1517.e19. doi: 10.1016/j.chembiol.2024.07.001. Epub 2024 Jul 30.
6
Bibliometric analysis of antimalarial drug resistance.
Front Cell Infect Microbiol. 2024 Feb 12;14:1270060. doi: 10.3389/fcimb.2024.1270060. eCollection 2024.
7
Promising antimalarial hits from phenotypic screens: a review of recently-described multi-stage actives and their modes of action.
Front Cell Infect Microbiol. 2023 Dec 15;13:1308193. doi: 10.3389/fcimb.2023.1308193. eCollection 2023.

本文引用的文献

1
Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum.
Nat Commun. 2023 May 27;14(1):3059. doi: 10.1038/s41467-023-38774-1.
2
Current and emerging target identification methods for novel antimalarials.
Int J Parasitol Drugs Drug Resist. 2022 Dec;20:135-144. doi: 10.1016/j.ijpddr.2022.11.001. Epub 2022 Nov 11.
3
Transmission-blocking drugs for malaria elimination.
Trends Parasitol. 2022 May;38(5):390-403. doi: 10.1016/j.pt.2022.01.011. Epub 2022 Feb 19.
4
Comparative Analysis of Plasmodium falciparum Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing.
Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0116321. doi: 10.1128/AAC.01163-21. Epub 2021 Oct 25.
5
Evidence of Artemisinin-Resistant Malaria in Africa.
N Engl J Med. 2021 Sep 23;385(13):1163-1171. doi: 10.1056/NEJMoa2101746.
6
Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention.
Cell Chem Biol. 2022 Feb 17;29(2):191-201.e8. doi: 10.1016/j.chembiol.2021.07.010. Epub 2021 Aug 3.
7
Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in .
J Med Chem. 2021 Mar 11;64(5):2739-2761. doi: 10.1021/acs.jmedchem.0c02022. Epub 2021 Feb 23.
10
The antimalarial resistome - finding new drug targets and their modes of action.
Curr Opin Microbiol. 2020 Oct;57:49-55. doi: 10.1016/j.mib.2020.06.004. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验