Suppr超能文献

技术说明:渐进式深度学习:一种用于医学图像分割的加速训练策略。

Technical note: Progressive deep learning: An accelerated training strategy for medical image segmentation.

机构信息

Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.

Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea.

出版信息

Med Phys. 2023 Aug;50(8):5075-5087. doi: 10.1002/mp.16267. Epub 2023 Feb 17.

Abstract

BACKGROUND

Recent advancements in Deep Learning (DL) methodologies have led to state-of-the-art performance in a wide range of applications especially in object recognition, classification, and segmentation of medical images. However, training modern DL models requires a large amount of computation and long training times due to the complex nature of network structures and the large number of training datasets involved. Moreover, it is an intensive, repetitive manual process to select the optimized configuration of hyperparameters for a given DL network.

PURPOSE

In this study, we present a novel approach to accelerate the training time of DL models via the progressive feeding of training datasets based on similarity measures for medical image segmentation. We term this approach Progressive Deep Learning (PDL).

METHODS

The two-stage PDL approach was tested on the auto-segmentation task for two imaging modalities: CT and MRI. The training datasets were ranked according to similarity measures between each sample based on Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and the Universal Quality Image Index (UQI) values. At the start of the training process, a relatively coarse sampling of training datasets with higher ranks was used to optimize the hyperparameters of the DL network. Following this, the samples with higher ranks were used in step 1 to yield accelerated loss minimization in early training epochs and the total dataset was added in step 2 for the remainder of training.

RESULTS

Our results demonstrate that the PDL approach can reduce the training time by nearly half (∼49%) and can predict segmentations (CT U-net/DenseNet dice coefficient: 0.9506/0.9508, MR U-net/DenseNet dice coefficient: 0.9508/0.9510) without major statistical difference (Wilcoxon signed-rank test) compared to the conventional DL approach. The total training times with a fixed cutoff at 0.95 DSC for the CT dataset using DenseNet and U-Net architectures, respectively, were 17 h, 20 min and 4 h, 45 min in the conventional case compared to 8 h, 45 min and 2 h, 20 min with PDL. For the MRI dataset, the total training times using the same architectures were 2 h, 54 min and 52 min in the conventional case and 1 h, 14 min and 25 min with PDL.

CONCLUSION

The proposed PDL training approach offers the ability to substantially reduce the training time for medical image segmentation while maintaining the performance achieved in the conventional case.

摘要

背景

深度学习 (DL) 方法的最新进展使得在广泛的应用领域(尤其是在医学图像的目标识别、分类和分割方面)达到了最先进的性能。然而,由于网络结构的复杂性和涉及的大量训练数据集,训练现代 DL 模型需要大量的计算和较长的训练时间。此外,为给定的 DL 网络选择最佳超参数配置是一项密集、重复的手动过程。

目的

在这项研究中,我们提出了一种通过基于医学图像分割的相似性度量对训练数据集进行渐进式馈送来加速 DL 模型训练时间的新方法。我们将这种方法称为渐进式深度学习 (PDL)。

方法

两阶段 PDL 方法在 CT 和 MRI 两种成像模式的自动分割任务中进行了测试。根据基于均方误差 (MSE)、峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和通用质量图像指数 (UQI) 值的每个样本之间的相似性对训练数据集进行排序。在训练过程开始时,使用具有较高排名的训练数据集的相对粗糙采样来优化 DL 网络的超参数。在此之后,在早期训练阶段,使用具有较高排名的样本在步骤 1 中加速损失最小化,在步骤 2 中添加具有较高排名的所有样本以完成剩余的训练。

结果

我们的结果表明,与传统的 DL 方法相比,PDL 方法可以将训练时间缩短近一半(约 49%),并且可以进行分割预测(CT U-net/DenseNet 骰子系数:0.9506/0.9508,MR U-net/DenseNet 骰子系数:0.9508/0.9510),而没有显著的统计学差异(Wilcoxon 符号秩检验)。在使用 DenseNet 和 U-Net 架构的 CT 数据集上,固定 DSC 为 0.95 的总训练时间分别为 17 小时、20 分钟和常规情况下的 4 小时、45 分钟,与 PDL 相比分别为 8 小时、45 分钟和 2 小时、20 分钟。对于 MRI 数据集,使用相同架构的总训练时间在常规情况下分别为 2 小时、54 分钟和 52 分钟,而使用 PDL 分别为 1 小时、14 分钟和 25 分钟。

结论

所提出的 PDL 训练方法能够大大减少医学图像分割的训练时间,同时保持传统方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验