文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于深度学习的新型自适应三次拟牛顿优化器,在 COVID-19 检测和 COVID-19 肺部感染、肝脏肿瘤以及视盘/杯分割等医学图像分析任务中得到验证。

A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.

机构信息

College of Systems Engineering, National University of Defense Technology, Changsha, China.

出版信息

Med Phys. 2023 Mar;50(3):1528-1538. doi: 10.1002/mp.15969. Epub 2022 Oct 6.


DOI:10.1002/mp.15969
PMID:36057788
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9538560/
Abstract

BACKGROUND: Most of existing deep learning research in medical image analysis is focused on networks with stronger performance. These networks have achieved success, while their architectures are complex and even contain massive parameters ranging from thousands to millions in numbers. The nature of high dimension and nonconvex makes it easy to train a suboptimal model through the popular stochastic first-order optimizers, which only use gradient information. PURPOSE: Our purpose is to design an adaptive cubic quasi-Newton optimizer, which could help to escape from suboptimal solution and improve the performance of deep neural networks on four medical image analysis tasks including: detection of COVID-19, COVID-19 lung infection segmentation, liver tumor segmentation, optic disc/cup segmentation. METHODS: In this work, we introduce a novel adaptive cubic quasi-Newton optimizer with high-order moment (termed ACQN-H) for medical image analysis. The optimizer dynamically captures the curvature of the loss function by diagonally approximated Hessian and the norm of difference between previous two estimates, which helps to escape from saddle points more efficiently. In addition, to reduce the variance introduced by the stochastic nature of the problem, ACQN-H hires high-order moment through exponential moving average on iteratively calculated approximated Hessian matrix. Extensive experiments are performed to access the performance of ACQN-H. These include detection of COVID-19 using COVID-Net on dataset COVID-chestxray, which contains 16 565 training samples and 1841 test samples; COVID-19 lung infection segmentation using Inf-Net on COVID-CT, which contains 45, 5, and 5 computer tomography (CT) images for training, validation, and testing, respectively; liver tumor segmentation using ResUNet on LiTS2017, which consists of 50 622 abdominal scan images for training and 26 608 images for testing; optic disc/cup segmentation using MRNet on RIGA, which has 655 color fundus images for training and 95 for testing. The results are compared with commonly used stochastic first-order optimizers such as Adam, SGD, and AdaBound, and recently proposed stochastic quasi-Newton optimizer Apollo. In task detection of COVID-19, we use classification accuracy as the evaluation metric. For the other three medical image segmentation tasks, seven commonly used evaluation metrics are utilized, that is, Dice, structure measure, enhanced-alignment measure (EM), mean absolute error (MAE), intersection over union (IoU), true positive rate (TPR), and true negative rate. RESULTS: Experiments on four tasks show that ACQN-H achieves improvements over other stochastic optimizers: (1) comparing with AdaBound, ACQN-H achieves 0.49%, 0.11%, and 0.70% higher accuracy on the COVID-chestxray dataset using network COVID-Net with VGG16, ResNet50 and DenseNet121 as backbones, respectively; (2) ACQN-H has the best scores in terms of evaluation metrics Dice, TPR, EM, and MAE on COVID-CT dataset using network Inf-Net. Particularly, ACQN-H achieves 1.0% better Dice as compared to Apollo; (3) ACQN-H achieves the best results on LiTS2017 dataset using network ResUNet, and outperforms Adam in terms of Dice by 2.3%; (4) ACQN-H improves the performance of network MRNet on RIGA dataset, and achieves 0.5% and 1.0% better scores on cup segmentation for Dice and IoU, respectively, compared with SGD. We also present fivefold validation results of four tasks. It can be found that the results on detection of COVID-19, liver tumor segmentation and optic disc/cup segmentation can achieve high performance with low variance. For COVID-19 lung infection segmentation, the variance on test set is much larger than on validation set, which may due to small size of dataset. CONCLUSIONS: The proposed optimizer ACQN-H has been validated on four medical image analysis tasks including: detection of COVID-19 using COVID-Net on COVID-chestxray, COVID-19 lung infection segmentation using Inf-Net on COVID-CT, liver tumor segmentation using ResUNet on LiTS2017, optic disc/cup segmentation using MRNet on RIGA. Experiments show that ACQN-H can achieve some performance improvement. Moreover, the work is expected to boost the performance of existing deep learning networks in medical image analysis.

摘要

背景:大多数现有的医学图像分析深度学习研究都集中在性能更强的网络上。这些网络已经取得了成功,但其架构复杂,甚至包含数以千计到数百万的大规模参数。由于高维性和非凸性,通过流行的随机一阶优化器(仅使用梯度信息)很容易训练出次优模型。

目的:我们的目的是设计一种自适应立方拟牛顿优化器(ACQN-H),它可以帮助摆脱次优解,并提高深度神经网络在四项医学图像分析任务中的性能,包括:COVID-19 检测、COVID-19 肺部感染分割、肝脏肿瘤分割、视盘/杯分割。

方法:在这项工作中,我们引入了一种新的自适应立方拟牛顿优化器(ACQN-H),该优化器具有高阶矩(称为 ACQN-H),用于医学图像分析。该优化器通过对角近似 Hessian 和前两次估计之间的差的范数来动态地捕获损失函数的曲率,这有助于更有效地摆脱鞍点。此外,为了减少问题的随机性质引入的方差,ACQN-H 通过在迭代计算的近似 Hessian 矩阵上进行指数移动平均来使用高阶矩。进行了广泛的实验来评估 ACQN-H 的性能。这些实验包括使用 COVID-Net 在包含 16565 个训练样本和 1841 个测试样本的 COVID-chestxray 数据集上进行 COVID-19 检测;使用 Inf-Net 在包含 45、5 和 5 张计算机断层扫描(CT)图像的 COVID-CT 上进行 COVID-19 肺部感染分割,分别用于训练、验证和测试;使用 ResUNet 在包含 50622 个腹部扫描图像的 LiTS2017 上进行肝脏肿瘤分割,用于训练和测试;使用 MRNet 在包含 655 张彩色眼底图像的 RIGA 上进行视盘/杯分割,用于训练和测试。将结果与常用的随机一阶优化器(如 Adam、SGD 和 AdaBound)和最近提出的随机拟牛顿优化器 Apollo 进行比较。在 COVID-19 检测任务中,我们使用分类准确率作为评估指标。对于其他三个医学图像分割任务,使用了七个常用的评估指标,即 Dice、结构度量、增强对齐度量(EM)、平均绝对误差(MAE)、交并比(IoU)、真阳性率(TPR)和真阴性率。

结果:四项任务的实验表明,ACQN-H 优于其他随机优化器:(1)与 AdaBound 相比,使用 VGG16、ResNet50 和 DenseNet121 作为骨干的网络 COVID-Net 在 COVID-chestxray 数据集上的准确率分别提高了 0.49%、0.11%和 0.70%;(2)在 COVID-CT 数据集上使用网络 Inf-Net,ACQN-H 在 Dice、TPR、EM 和 MAE 等评估指标方面的得分最好;(3)在 LiTS2017 数据集上使用网络 ResUNet,ACQN-H 的性能最佳,与 Apollo 相比,Dice 提高了 1.0%;(4)在 RIGA 数据集上,ACQN-H 提高了网络 MRNet 的性能,在 Dice 方面比 Adam 提高了 2.3%。我们还展示了四项任务的五重验证结果。可以发现,COVID-19 检测、肝脏肿瘤分割和视盘/杯分割的结果具有较低的方差,性能较高。对于 COVID-19 肺部感染分割,测试集的方差比验证集大得多,这可能是由于数据集较小。

结论:在所提出的优化器 ACQN-H 已经验证了四个医学图像分析任务,包括:COVID-19 的检测,COVID-Net 在 COVID-chestxray 上,COVID-19 肺部感染分割,Inf-Net 在 COVID-CT 上,肝脏肿瘤分割,ResUNet 在 LiTS2017 上,视盘/杯分割,MRNet 在 RIGA 上。实验表明,ACQN-H 可以取得一些性能上的改进。此外,这项工作有望提高医学图像分析中现有深度学习网络的性能。

相似文献

[1]
A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.

Med Phys. 2023-3

[2]
AdaCN: An Adaptive Cubic Newton Method for Nonconvex Stochastic Optimization.

Comput Intell Neurosci. 2021

[3]
Robust optic disc and cup segmentation with deep learning for glaucoma detection.

Comput Med Imaging Graph. 2019-4-5

[4]
Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network.

BMC Med Imaging. 2021-1-28

[5]
Selecting the best optimizers for deep learning-based medical image segmentation.

Front Radiol. 2023-9-21

[6]
WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images.

Int J Comput Assist Radiol Surg. 2020-5-22

[7]
Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks.

J Xray Sci Technol. 2022

[8]
ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.

Med Phys. 2020-7

[9]
RimNet: A Deep Neural Network Pipeline for Automated Identification of the Optic Disc Rim.

Ophthalmol Sci. 2022-11-3

[10]
A novel adaptive momentum method for medical image classification using convolutional neural network.

BMC Med Imaging. 2022-3-1

引用本文的文献

[1]
Autonomous robotic ultrasound scanning system: a key to enhancing image analysis reproducibility and observer consistency in ultrasound imaging.

Front Robot AI. 2025-2-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索