Choi Byongsu, Beltran Chris J, Yoo Sang Kyun, Kwon Na Hye, Kim Jin Sung, Park Justin Chunjoo
Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA.
Yonsei Cancer Center, Department of Radiation Oncology, Yonsei Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
J Pers Med. 2024 Sep 15;14(9):979. doi: 10.3390/jpm14090979.
Adaptive radiotherapy (ART) workflows are increasingly adopted to achieve dose escalation and tissue sparing under dynamic anatomical conditions. However, recontouring and time constraints hinder the implementation of real-time ART workflows. Various auto-segmentation methods, including deformable image registration, atlas-based segmentation, and deep learning-based segmentation (DLS), have been developed to address these challenges. Despite the potential of DLS methods, clinical implementation remains difficult due to the need for large, high-quality datasets to ensure model generalizability. This study introduces an InterVision framework for segmentation. The InterVision framework can interpolate or create intermediate visuals between existing images to generate specific patient characteristics. The InterVision model is trained in two steps: (1) generating a general model using the dataset, and (2) tuning the general model using the dataset generated from the InterVision framework. The InterVision framework generates intermediate images between existing patient image slides using deformable vectors, effectively capturing unique patient characteristics. By creating a more comprehensive dataset that reflects these individual characteristics, the InterVision model demonstrates the ability to produce more accurate contours compared to general models. Models are evaluated using the volumetric dice similarity coefficient (VDSC) and the Hausdorff distance 95% (HD95%) for 18 structures in 20 test patients. As a result, the Dice score was 0.81 ± 0.05 for the general model, 0.82 ± 0.04 for the general fine-tuning model, and 0.85 ± 0.03 for the InterVision model. The Hausdorff distance was 3.06 ± 1.13 for the general model, 2.81 ± 0.77 for the general fine-tuning model, and 2.52 ± 0.50 for the InterVision model. The InterVision model showed the best performance compared to the general model. The InterVision framework presents a versatile approach adaptable to various tasks where prior information is accessible, such as in ART settings. This capability is particularly valuable for accurately predicting complex organs and targets that pose challenges for traditional deep learning algorithms.
自适应放疗(ART)工作流程越来越多地被采用,以在动态解剖条件下实现剂量递增和组织保护。然而,重新轮廓勾画和时间限制阻碍了实时ART工作流程的实施。已经开发了各种自动分割方法,包括可变形图像配准、基于图谱的分割和基于深度学习的分割(DLS),以应对这些挑战。尽管DLS方法具有潜力,但由于需要大型高质量数据集来确保模型的通用性,临床实施仍然困难。本研究介绍了一种用于分割的InterVision框架。InterVision框架可以在现有图像之间插值或创建中间视觉效果,以生成特定患者特征。InterVision模型分两步进行训练:(1)使用数据集生成通用模型,(2)使用从InterVision框架生成的数据集对通用模型进行调整。InterVision框架使用可变形向量在现有患者图像幻灯片之间生成中间图像,有效地捕捉独特的患者特征。通过创建一个更全面的反映这些个体特征的数据集,InterVision模型显示出与通用模型相比能够生成更准确轮廓的能力。使用体积骰子相似系数(VDSC)和豪斯多夫距离95%(HD95%)对20名测试患者的18个结构进行模型评估。结果,通用模型骰子分数为0.81±0.05,通用微调模型为0.82±0.04,InterVision模型为0.85±0.03。通用模型的豪斯多夫距离为3.06±1.13,通用微调模型为2.81±0.77,InterVision模型为2.52±0.50。与通用模型相比,InterVision模型表现最佳。InterVision框架提出了一种通用方法,适用于可以获取先验信息的各种任务,如在ART设置中。这种能力对于准确预测对传统深度学习算法构成挑战的复杂器官和靶标特别有价值。