Suppr超能文献

一种用于表征软组织力学行为的新本构公式。

A new constitutive formulation for characterizing the mechanical behavior of soft tissues.

作者信息

Humphrey J D, Yin F C

机构信息

Department of Medicine, Johns Hopkins University and Medical Institutions, Baltimore, Maryland 21218.

出版信息

Biophys J. 1987 Oct;52(4):563-70. doi: 10.1016/S0006-3495(87)83245-9.

Abstract

We present a new constitutive formulation that combines certain desirable features of two previously used approaches (phenomenological and microstructural). Specifically, we assume that certain soft tissues can be idealized as composed of various families of noninteracting fibers and a homogeneous matrix. Both the fibers and the matrix are assumed to follow the gross deformation. Within the usual framework of pseudoelasticity, incompressibility, homogeneity, and the continuum hypothesis, a pseudostrain-energy function (W) is proposed wherein W is expressed in terms of matrix and fibrous contributions. Unlike phenomenological approaches where a W is usually chosen in an ad hoc manner, the present approach can be used to postulate reasonable forms of W based on limited structural information and multiaxial stress-strain data. Illustrative applications of the theory are discussed for visceral pleura and myocardium. Concise structurally motivated constitutive relations result, wherein load-dependent anisotropy, nonlinear material behavior, finite deformations, and incompressibility are accounted for.

摘要

我们提出了一种新的本构公式,它结合了两种先前使用的方法(唯象学方法和微观结构方法)的某些理想特性。具体而言,我们假设某些软组织可以理想化为由各种互不作用的纤维族和均匀基体组成。纤维和基体都假定遵循总体变形。在伪弹性、不可压缩性、均匀性和连续介质假设的通常框架内,提出了一个伪应变能函数(W),其中W根据基体和纤维的贡献来表示。与通常以特设方式选择W的唯象学方法不同,本方法可用于根据有限的结构信息和多轴应力 - 应变数据假定W的合理形式。讨论了该理论在内脏胸膜和心肌方面的示例应用。由此得出简洁的基于结构的本构关系,其中考虑了与载荷相关的各向异性、非线性材料行为、有限变形和不可压缩性。

相似文献

1
A new constitutive formulation for characterizing the mechanical behavior of soft tissues.
Biophys J. 1987 Oct;52(4):563-70. doi: 10.1016/S0006-3495(87)83245-9.
2
4
Microstructurally-based constitutive modelling of the skin - Linking intrinsic ageing to microstructural parameters.
J Theor Biol. 2018 May 7;444:108-123. doi: 10.1016/j.jtbi.2018.01.014. Epub 2018 Jan 31.
5
Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
J Mech Behav Biomed Mater. 2016 Aug;61:397-409. doi: 10.1016/j.jmbbm.2016.03.014. Epub 2016 Apr 14.
6
Structure-strength relations in mammalian tendon.
Biophys J. 1978 Nov;24(2):541-54. doi: 10.1016/S0006-3495(78)85400-9.
7
Micro and macro rheology of planar tissues.
Biomaterials. 2009 Jun;30(17):3118-27. doi: 10.1016/j.biomaterials.2009.02.039. Epub 2009 Mar 26.
9
Multiaxial mechanical behavior of biological materials.
Annu Rev Biomed Eng. 2003;5:251-84. doi: 10.1146/annurev.bioeng.5.011303.120714. Epub 2003 Apr 18.

引用本文的文献

1
Innovative Strategies in Hernia Mesh Design: Materials, Mechanics, and Modeling.
Materials (Basel). 2025 Jul 26;18(15):3509. doi: 10.3390/ma18153509.
2
A universal material model subroutine for soft matter systems.
Eng Comput. 2025;41(2):905-927. doi: 10.1007/s00366-024-02031-w. Epub 2024 Sep 18.
3
The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
J Mech Behav Biomed Mater. 2023 Aug;144:105967. doi: 10.1016/j.jmbbm.2023.105967. Epub 2023 Jun 8.
4
Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: application to planar soft tissues.
Comput Methods Appl Mech Eng. 2023 Feb 1;404. doi: 10.1016/j.cma.2022.115812. Epub 2022 Dec 10.
5
A Bayesian constitutive model selection framework for biaxial mechanical testing of planar soft tissues: Application to porcine aortic valves.
J Mech Behav Biomed Mater. 2023 Feb;138:105657. doi: 10.1016/j.jmbbm.2023.105657. Epub 2023 Jan 5.
6
Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting.
Heliyon. 2022 May 5;8(5):e09312. doi: 10.1016/j.heliyon.2022.e09312. eCollection 2022 May.
7
The role of elastin on the mechanical properties of the anterior leaflet in porcine tricuspid valves.
PLoS One. 2022 May 13;17(5):e0267131. doi: 10.1371/journal.pone.0267131. eCollection 2022.
8
[Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Dec 25;37(6):939-947. doi: 10.7507/1001-5515.202008030.
9
Introduction to the Special Issue on .
Bioengineering (Basel). 2020 Aug 17;7(3):95. doi: 10.3390/bioengineering7030095.
10

本文引用的文献

2
An elastic stress-strain relation for soft biological tissues based on a structural model.
J Biomech. 1980;13(6):463-8. doi: 10.1016/0021-9290(80)90338-3.
3
The collagen matrix of the heart.
Fed Proc. 1981 May 15;40(7):2037-41.
4
Mechanics of the left ventricle.
Biophys J. 1982 Sep;39(3):279-88. doi: 10.1016/S0006-3495(82)84518-9.
5
Static analysis of the left ventricle.
J Biomech Eng. 1983 Feb;105(1):39-46.
6
Constitutive equations for fibrous connective tissues.
J Biomech. 1983;16(1):1-12. doi: 10.1016/0021-9290(83)90041-6.
7
Mechanics of the pressure-volume curve of the lung.
Ann Biomed Eng. 1981;9(5-6):439-49. doi: 10.1007/BF02364762.
8
Constitutive equations for the lung tissue.
J Biomech Eng. 1983 Nov;105(4):374-80. doi: 10.1115/1.3138435.
9
Three-dimensional stress distribution in arteries.
J Biomech Eng. 1983 Aug;105(3):268-74. doi: 10.1115/1.3138417.
10
Mechanical properties of pleural membrane.
J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):1189-94. doi: 10.1152/jappl.1984.57.4.1189.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验