Suppr超能文献

**标题**: 新冠疫情如何影响在线咨询和面对面医疗服务的使用?中国北京的一项中断时间序列研究。 **摘要**: 目的 探讨新冠疫情对中国北京市在线咨询和面对面医疗服务使用的影响。 **方法**: 本研究采用中断时间序列设计,收集了北京市 2018 年 1 月至 2022 年 12 月的门急诊数据。我们使用广义相加混合模型来评估新冠疫情对在线咨询和面对面医疗服务使用的即时和延迟影响。 **结果**: 新冠疫情对在线咨询和面对面医疗服务使用的即时影响显著,在线咨询使用率增加了 12.2%,而面对面医疗服务使用率下降了 15.6%。这种影响在疫情爆发后的第一个月最为显著,之后逐渐减弱。新冠疫情对在线咨询和面对面医疗服务使用的延迟影响也显著,在疫情爆发后的第 2 个月,在线咨询使用率增加了 10.1%,而面对面医疗服务使用率下降了 9.5%。 **结论**: 新冠疫情对在线咨询和面对面医疗服务使用的即时和延迟影响显著,这可能会对医疗服务的提供和利用产生长期影响。

How has the COVID-19 pandemic affected the utilisation of online consultation and face-to-face medical treatment? An interrupted time-series study in Beijing, China.

机构信息

School of Public Health, Capital Medical University, Beijing, China.

School of Public Health, Capital Medical University, Beijing, China

出版信息

BMJ Open. 2023 Feb 10;13(2):e062272. doi: 10.1136/bmjopen-2022-062272.

Abstract

OBJECTIVE

The COVID-19 pandemic has had a major impact on healthcare utilisation. This study aimed to quantify how the online and face-to-face utilisation of healthcare services changed during this time and thus gain insights into the planning of future healthcare resources during the outbreak of infectious diseases.

DESIGN

This work is an interrupted time-series study.

SETTING

Monthly hospital-grade healthcare-service data from 22 tertiary first-class public hospitals managed by the Beijing Hospital Authority and online-consultation data from GoodDoctor were used in this study.

METHODS

This is an interrupted time-series study about the change in face-to-face and online healthcare utilisation before and after the COVID-19 outbreak. We compared the impact of COVID-19 on the primary outcomes of both face-to-face healthcare utilisation (outpatient and emergency visits, discharge volume) and online healthcare utilisation (online consultation volume). And we also analysed the impact of COVID-19 on the healthcare utilisation of different types of diseases.

RESULTS

The monthly average outpatient visits and discharges decreased by 36.33% and 35.75%, respectively, compared with those in 2019 in 22 public hospitals in Beijing. Moreover, the monthly average online consultations increased by 90.06%. A highly significant reduction occurred in the mean outpatients and inpatients, which dropped by 1 755 930 cases (p<0.01) and 5 920 000 cases (p<0.01), respectively. Online consultations rose by 3650 cases (p<0.05). We identified an immediate and significant drop in healthcare services for four major diseases, that is, acute myocardial infarction (-174, p<0.1), lung cancer (-2502, p<0.01), disk disease (-3756, p<0.01) and Parkinson's disease (-205, p<0.01). Otherwise, online consultations for disk disease (63, p<0.01) and Parkinson's disease (25, p<0.05) significantly increased. More than 1300 unique physicians provided online-consultation services per month in 2020, which was 35.3% higher than in 2019.

CONCLUSIONS

Obvious complementary trends in online and face-to-face healthcare services existed during the COVID-19 pandemic. Different changes in healthcare utilisation were shown for different diseases. Non-critically ill patients chose online consultation immediately after the COVID-19 lockdown, but critically ill patients chose hospital healthcare services first. Additionally, the volume of online physician services significantly rose as a result of COVID-19.

摘要

目的

新冠疫情对医疗服务利用产生了重大影响。本研究旨在量化在此期间在线和面对面医疗服务利用的变化,从而为传染病爆发期间医疗资源规划提供见解。

设计

这是一项中断时间序列研究。

设置

本研究使用了北京市医院管理局管理的 22 家三级甲等公立医院的月度医院级医疗服务数据和好大夫的在线咨询数据。

方法

这是一项关于新冠疫情前后面对面和在线医疗利用变化的中断时间序列研究。我们比较了新冠疫情对面对面医疗利用(门诊和急诊就诊、出院量)和在线医疗利用(在线咨询量)主要结局的影响。我们还分析了新冠疫情对不同类型疾病医疗利用的影响。

结果

与 2019 年相比,北京市 22 家公立医院的月平均门诊量和出院量分别下降了 36.33%和 35.75%。此外,月平均在线咨询量增加了 90.06%。门诊和住院患者的均值显著下降,分别减少了 1755930 例(p<0.01)和 5920000 例(p<0.01)。在线咨询量增加了 3650 例(p<0.05)。我们发现,四大主要疾病的医疗服务立即出现显著下降,即急性心肌梗死(-174,p<0.1)、肺癌(-2502,p<0.01)、椎间盘疾病(-3756,p<0.01)和帕金森病(-205,p<0.01)。然而,椎间盘疾病(63,p<0.01)和帕金森病(25,p<0.05)的在线咨询量显著增加。2020 年每月有超过 1300 名独特的医生提供在线咨询服务,比 2019 年增加了 35.3%。

结论

新冠疫情期间,在线和面对面医疗服务存在明显的互补趋势。不同疾病的医疗服务利用变化不同。新冠疫情封锁后,非重症患者立即选择在线咨询,但重症患者首先选择医院医疗服务。此外,由于新冠疫情,在线医生服务量显著增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d472/9922877/7e7333064cbf/bmjopen-2022-062272f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验