Suppr超能文献

深度学习诊断冠状动脉分层斑块。

Diagnosis of coronary layered plaque by deep learning.

机构信息

Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRB 800, Boston, MA, 02114, USA.

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, South Korea.

出版信息

Sci Rep. 2023 Feb 10;13(1):2432. doi: 10.1038/s41598-023-29293-6.

Abstract

Healed coronary plaques, morphologically characterized by a layered phenotype, are signs of previous plaque destabilization and healing. Recent optical coherence tomography (OCT) studies demonstrated that layered plaque is associated with higher levels of local and systemic inflammation and rapid plaque progression. However, the diagnosis of layered plaque needs expertise in OCT image analysis and is susceptible to inter-observer variability. We developed a deep learning (DL) model for an accurate diagnosis of layered plaque. A Visual Transformer (ViT)-based DL model that integrates information from adjacent frames emulating the cardiologists who review consecutive OCT frames to make a diagnosis was developed and compared with the standard convolutional neural network (CNN) model. A total of 237,021 cross-sectional OCT images from 581 patients collected from 8 sites were used for training and internal validation, and 65,394 images from 292 patients collected from another site were used for external validation. In the five-fold cross-validation, the ViT-based model provided better performance (area under the curve [AUC]: 0.860; 95% confidence interval [CI]: 0.855-0.866) than the standard CNN-based model (AUC: 0.799; 95% CI: 0.792-0.805). The ViT-based model (AUC: 0.845; 95% CI: 0.837-0.853) also surpassed the standard CNN-based model (AUC: 0.791; 95% CI: 0.782-0.800) in the external validation. The ViT-based DL model can accurately diagnose a layered plaque, which could help risk stratification for cardiac events.

摘要

修复的冠状动脉斑块,在形态学上表现为分层表型,是斑块不稳定和修复的先前迹象。最近的光学相干断层扫描 (OCT) 研究表明,分层斑块与更高水平的局部和全身炎症以及斑块快速进展有关。然而,分层斑块的诊断需要 OCT 图像分析方面的专业知识,并且容易受到观察者间差异的影响。我们开发了一种深度学习 (DL) 模型,用于准确诊断分层斑块。开发了一种基于视觉转换器 (ViT) 的 DL 模型,该模型集成了来自相邻帧的信息,模仿了连续查看 OCT 帧以做出诊断的心脏病专家,与标准卷积神经网络 (CNN) 模型进行了比较。使用来自 8 个站点的 581 名患者的总共 237,021 个横截面 OCT 图像进行了训练和内部验证,并且使用来自另一个站点的 292 名患者的 65,394 个图像进行了外部验证。在五重交叉验证中,基于 ViT 的模型提供了更好的性能(曲线下面积 [AUC]:0.860;95%置信区间 [CI]:0.855-0.866)比基于标准 CNN 的模型(AUC:0.799;95% CI:0.792-0.805)。基于 ViT 的模型(AUC:0.845;95% CI:0.837-0.853)在外部验证中也超过了基于标准 CNN 的模型(AUC:0.791;95% CI:0.782-0.800)。基于 ViT 的 DL 模型可以准确诊断分层斑块,这有助于对心脏事件进行风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ce/9918456/3f1188723c71/41598_2023_29293_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验