Suppr超能文献

基于网络药理学解码抵当汤治疗脑出血的潜在机制。

Decoding the underlying mechanisms of Di-Tan-Decoction in treating intracerebral hemorrhage based on network pharmacology.

机构信息

The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

出版信息

BMC Complement Med Ther. 2023 Feb 10;23(1):44. doi: 10.1186/s12906-022-03831-7.

Abstract

BACKGROUND

Chinese medicine usually acts as "multi-ingredients, multi-targets and multi-pathways" on complex diseases, and these action modes reflect the coordination and integrity of the treatment process with traditional Chinese medicine (TCM). System pharmacology is developed based on the cross-disciplines of directional pharmacology, system biology, and mathematics, has the characteristics of integrity and synergy in the treatment process of TCM. Therefore, it is suitable for analyzing the key ingredients and mechanisms of TCM in treating complex diseases. Intracerebral Hemorrhage (ICH) is one of the leading causes of death in China, with the characteristics of high mortality and disability rate. Bring a significant burden on people and society. An increasing number of studies have shown that Chinese medicine prescriptions have good advantages in the treatment of ICH, and Ditan Decoction (DTT) is one of the commonly used prescriptions in the treatment of ICH. Modern pharmacological studies have shown that DTT may play a therapeutic role in treating ICH by inhibiting brain inflammation, abnormal oxidative stress reaction and reducing neurological damage, but the specific key ingredients and mechanism are still unclear.

METHODS

To solve this problem, we established PPI network based on the latest pathogenic gene data of ICH, and CT network based on ingredient and target data of DTT. Subsequently, we established optimization space based on PPI network and CT network, and constructed a new model for node importance calculation, and proposed a calculation method for PES score, thus calculating the functional core ingredients group (FCIG). These core functional groups may represent DTT therapy for ICH.

RESULTS

Based on the strategy, 44 ingredients were predicted as FCIG, results showed that 80.44% of the FCIG targets enriched pathways were coincided with the enriched pathways of pathogenic genes. Both the literature and molecular docking results confirm the therapeutic effect of FCIG on ICH via targeting MAPK signaling pathway and PI3K-Akt signaling pathway.

CONCLUSIONS

The FCIG obtained by our network pharmacology method can represent the effect of DTT in treating ICH. These results confirmed that our strategy of active ingredient group optimization and the mechanism inference could provide methodological reference for optimization and secondary development of TCM.

摘要

背景

中药对复杂疾病通常表现为“多成分、多靶点、多途径”的作用方式,这些作用模式反映了中药治疗过程的协同与整体性。系统药理学是在定向药理学、系统生物学和数学等跨学科的基础上发展起来的,具有中药治疗过程的整体性和协同性的特点。因此,它适用于分析中药治疗复杂疾病的关键成分和机制。脑出血(ICH)是中国主要的死亡原因之一,具有高死亡率和高致残率的特点。给人们和社会带来了巨大的负担。越来越多的研究表明,中药方剂在治疗 ICH 方面具有良好的优势,而抵当汤(DTT)是治疗 ICH 常用的方剂之一。现代药理学研究表明,DTT 可能通过抑制脑炎症、异常氧化应激反应和减轻神经损伤在治疗 ICH 中发挥治疗作用,但具体的关键成分和机制仍不清楚。

方法

为了解决这个问题,我们基于 ICH 的最新致病基因数据建立了 PPI 网络,基于 DTT 的成分和靶点数据建立了 CT 网络。随后,我们基于 PPI 网络和 CT 网络建立了优化空间,并构建了新的节点重要性计算模型,提出了 PES 得分的计算方法,从而计算出功能核心成分组(FCIG)。这些核心功能组可能代表 DTT 治疗 ICH。

结果

基于该策略,预测出 44 种成分作为 FCIG,结果表明 80.44%的 FCIG 靶点富集通路与致病基因的富集通路相吻合。文献和分子对接结果均证实了 FCIG 通过靶向 MAPK 信号通路和 PI3K-Akt 信号通路对 ICH 的治疗作用。

结论

我们的网络药理学方法获得的 FCIG 可以代表 DTT 治疗 ICH 的效果。这些结果证实了我们的活性成分组优化策略和机制推断可以为中药的优化和二次开发提供方法学参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54fe/9912606/e690fe87cade/12906_2022_3831_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验