Suppr超能文献

利用图像处理技术预测哈密瓜干燥过程中的含水率

Predicting the Moisture Ratio of a Hami Melon Drying Process Using Image Processing Technology.

作者信息

Zhu Guanyu, Raghavan G S V, Li Zhenfeng

机构信息

Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.

Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.

出版信息

Foods. 2023 Feb 3;12(3):672. doi: 10.3390/foods12030672.

Abstract

For food drying, moisture content and shrinkage are vital in the drying process. This paper is concerned with the moisture ratio modeling and prediction issues of the Hami melon drying process. First, an experimental system was developed; it included an adjustable-power microwave drying unit and an image-processing unit. The moisture contents and the areas of Hami melon slices at different times were sampled in real time. Then, the expression of the moisture ratio with regard to shrinkage was derived by using the Weierstrass approximation theorem. A maximum likelihood fitness function-based population evolution (MLFF-PE) algorithm was then put forward to fit the moisture ratio model and predict the moisture ratio. The results showed that the proposed MLFF-PE algorithm was effective at fitting and predicting the moisture ratio model of the drying process of Hami melon slices.

摘要

对于食品干燥,水分含量和收缩率在干燥过程中至关重要。本文关注哈密瓜干燥过程的水分比建模与预测问题。首先,开发了一个实验系统;它包括一个功率可调的微波干燥装置和一个图像处理单元。实时采集了不同时刻哈密瓜片的水分含量和面积。然后,利用魏尔斯特拉斯逼近定理推导了关于收缩率的水分比表达式。接着提出了一种基于最大似然适应度函数的种群进化(MLFF - PE)算法来拟合水分比模型并预测水分比。结果表明,所提出的MLFF - PE算法在拟合和预测哈密瓜片干燥过程的水分比模型方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f93/9914257/9f5a690c4b66/foods-12-00672-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验