Suppr超能文献

基于在线机器视觉的哈密瓜微波干燥过程建模:利用极限学习机和人工神经网络

Online Machine Vision-Based Modeling during Cantaloupe Microwave Drying Utilizing Extreme Learning Machine and Artificial Neural Network.

作者信息

Zhu Guanyu, Raghavan G S V, Xu Wanxiu, Pei Yongsheng, Li Zhenfeng

机构信息

Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.

Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.

出版信息

Foods. 2023 Mar 23;12(7):1372. doi: 10.3390/foods12071372.

Abstract

Online microwave drying process monitoring has been challenging due to the incompatibility of metal components with microwaves. This paper developed a microwave drying system based on online machine vision, which realized real-time extraction and measurement of images, weight, and temperature. An image-processing algorithm was developed to capture material shrinkage characteristics in real time. Constant-temperature microwave drying experiments were conducted, and the artificial neural network (ANN) and extreme learning machine (ELM) were utilized to model and predict the moisture content of materials during the drying process based on the degree of material shrinkage. The results demonstrated that the system and algorithm operated effectively, and ELM provided superior predictive performance and learning efficiency compared to ANN.

摘要

由于金属部件与微波不兼容,在线微波干燥过程监测一直具有挑战性。本文开发了一种基于在线机器视觉的微波干燥系统,该系统实现了对图像、重量和温度的实时提取与测量。开发了一种图像处理算法以实时捕捉物料收缩特性。进行了恒温微波干燥实验,并利用人工神经网络(ANN)和极限学习机(ELM)基于物料收缩程度对干燥过程中物料的水分含量进行建模和预测。结果表明,该系统和算法运行有效,与ANN相比,ELM具有更好的预测性能和学习效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aa3/10093650/d2e9d2b39767/foods-12-01372-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验