Suppr超能文献

基于局部三元模式的关联直方图均衡化技术用于宫颈癌检测

Local-Ternary-Pattern-Based Associated Histogram Equalization Technique for Cervical Cancer Detection.

作者信息

Srinivasan Saravanan, Raju Aravind Britto Karuppanan, Mathivanan Sandeep Kumar, Jayagopal Prabhu, Babu Jyothi Chinna, Sahu Aditya Kumar

机构信息

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India.

Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul 624622, India.

出版信息

Diagnostics (Basel). 2023 Feb 2;13(3):548. doi: 10.3390/diagnostics13030548.

Abstract

Every year, cervical cancer is a leading cause of mortality in women all over the world. This cancer can be cured if it is detected early and patients are treated promptly. This study proposes a new strategy for the detection of cervical cancer using cervigram pictures. The associated histogram equalization (AHE) technique is used to improve the edges of the cervical image, and then the finite ridgelet transform is used to generate a multi-resolution picture. Then, from this converted multi-resolution cervical picture, features such as ridgelets, gray-level run-length matrices, moment invariant, and enhanced local ternary pattern are retrieved. A feed-forward backward propagation neural network is used to train and test these extracted features in order to classify the cervical images as normal or abnormal. To detect and segment cancer regions, morphological procedures are applied to the abnormal cervical images. The cervical cancer detection system's performance metrics include 98.11% sensitivity, 98.97% specificity, 99.19% accuracy, a PPV of 98.88%, an NPV of 91.91%, an LPR of 141.02%, an LNR of 0.0836, 98.13% precision, 97.15% FPs, and 90.89% FNs. The simulation outcomes show that the proposed method is better at detecting and segmenting cervical cancer than the traditional methods.

摘要

每年,宫颈癌都是全球女性死亡的主要原因之一。如果能早期发现并及时治疗,这种癌症是可以治愈的。本研究提出了一种利用宫颈图像检测宫颈癌的新策略。采用关联直方图均衡化(AHE)技术来改善宫颈图像的边缘,然后使用有限脊波变换生成多分辨率图像。接着,从这种转换后的多分辨率宫颈图像中提取诸如脊波、灰度游程矩阵、不变矩和增强局部三值模式等特征。使用前馈反向传播神经网络对这些提取的特征进行训练和测试,以便将宫颈图像分类为正常或异常。为了检测和分割癌症区域,对异常宫颈图像应用形态学处理。宫颈癌检测系统的性能指标包括灵敏度98.11%、特异性98.97%、准确率99.19%、阳性预测值98.88%、阴性预测值91.91%、阳性似然比141.02%、阴性似然比0.0836、精确率98.13%、误报率97.15%和漏报率90.89%。模拟结果表明,所提出的方法在检测和分割宫颈癌方面比传统方法更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f187/9914420/ee26cc188239/diagnostics-13-00548-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验