Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea.
Department of Biomedical Engineering, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea.
Sci Rep. 2021 Aug 9;11(1):16143. doi: 10.1038/s41598-021-95748-3.
Cervical cancer is the second most common cancer in women worldwide with a mortality rate of 60%. Cervical cancer begins with no overt signs and has a long latent period, making early detection through regular checkups vitally immportant. In this study, we compare the performance of two different models, machine learning and deep learning, for the purpose of identifying signs of cervical cancer using cervicography images. Using the deep learning model ResNet-50 and the machine learning models XGB, SVM, and RF, we classified 4119 Cervicography images as positive or negative for cervical cancer using square images in which the vaginal wall regions were removed. The machine learning models extracted 10 major features from a total of 300 features. All tests were validated by fivefold cross-validation and receiver operating characteristics (ROC) analysis yielded the following AUCs: ResNet-50 0.97(CI 95% 0.949-0.976), XGB 0.82(CI 95% 0.797-0.851), SVM 0.84(CI 95% 0.801-0.854), RF 0.79(CI 95% 0.804-0.856). The ResNet-50 model showed a 0.15 point improvement (p < 0.05) over the average (0.82) of the three machine learning methods. Our data suggest that the ResNet-50 deep learning algorithm could offer greater performance than current machine learning models for the purpose of identifying cervical cancer using cervicography images.
宫颈癌是全球女性第二大常见癌症,死亡率为 60%。宫颈癌开始时没有明显的迹象,潜伏期长,因此通过定期检查尽早发现至关重要。在这项研究中,我们比较了两种不同的模型,机器学习和深度学习,用于使用宫颈摄影图像识别宫颈癌的迹象。我们使用深度学习模型 ResNet-50 和机器学习模型 XGB、SVM 和 RF,通过去除阴道壁区域的方形图像,将 4119 张宫颈摄影图像分类为宫颈癌阳性或阴性。机器学习模型从总共 300 个特征中提取了 10 个主要特征。所有测试均通过五折交叉验证进行验证,接收者操作特征(ROC)分析得出以下 AUC:ResNet-50 0.97(95%CI 0.949-0.976)、XGB 0.82(95%CI 0.797-0.851)、SVM 0.84(95%CI 0.801-0.854)、RF 0.79(95%CI 0.804-0.856)。ResNet-50 模型比三种机器学习方法的平均(0.82)高出 0.15 个百分点(p<0.05)。我们的数据表明,ResNet-50 深度学习算法在使用宫颈摄影图像识别宫颈癌方面的性能可能优于当前的机器学习模型。