Suppr超能文献

通过心率时间序列的重正化量化分析自动检测有氧阈值。

Automatic Detection of Aerobic Threshold through Recurrence Quantification Analysis of Heart Rate Time Series.

机构信息

Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy.

CNR Institute for Microelectronics and Microsystems (IMM), 40129 Bologna, Italy.

出版信息

Int J Environ Res Public Health. 2023 Jan 21;20(3):1998. doi: 10.3390/ijerph20031998.

Abstract

During exercise with increasing intensity, the human body transforms energy with mechanisms dependent upon actual requirements. Three phases of the body's energy utilization are recognized, characterized by different metabolic processes, and separated by two threshold points, called aerobic (AerT) and anaerobic threshold (AnT). These thresholds occur at determined values of exercise intensity(workload) and can change among individuals. They are considered indicators of exercise capacities and are useful in the personalization of physical activity plans. They are usually detected by ventilatory or metabolic variables and require expensive equipment and invasive measurements. Recently, particular attention has focused on AerT, which is a parameter especially useful in the overweight and obese population to determine the best amount of exercise intensity for weight loss and increasing physical fitness. The aim of study is to propose a new procedure to automatically identify AerT using the analysis of recurrences (RQA) relying only on Heart rate time series, acquired from a cohort of young athletes during a sub-maximal incremental exercise test (Cardiopulmonary Exercise Test, CPET) on a cycle ergometer. We found that the minima of determinism, an RQA feature calculated from the Recurrence Quantification by Epochs (RQE) approach, identify the time points where generic metabolic transitions occur. Among these transitions, a criterion based on the maximum convexity of the determinism minima allows to detect the first metabolic threshold. The ordinary least products regression analysis shows that values of the oxygen consumption VO, heart rate (HR), and Workload correspondent to the AerT estimated by RQA are strongly correlated with the one estimated by CPET (r > 0.64). Mean percentage differences are <2% for both HR and VO and <11% for Workload. The Technical Error for HR at AerT is <8%; intraclass correlation coefficients values are moderate (≥0.66) for all variables at AerT. This system thus represents a useful method to detect AerT relying only on heart rate time series, and once validated for different activities, in future, can be easily implemented in applications acquiring data from portable heart rate monitors.

摘要

在运动强度逐渐增加的过程中,人体通过依赖实际需求的机制来转化能量。人体能量利用分为三个阶段,其特征是不同的代谢过程,并通过两个阈值点(称为有氧阈(AerT)和无氧阈(AnT))分隔开。这些阈值出现在特定的运动强度(工作量)值,并可能在个体之间发生变化。它们被认为是运动能力的指标,在个性化的体育活动计划中非常有用。它们通常通过呼吸变量或代谢变量来检测,并且需要昂贵的设备和侵入性测量。最近,人们特别关注 AerT,它是超重和肥胖人群中特别有用的参数,可确定减肥和提高身体适应能力的最佳运动强度。本研究旨在提出一种新的方法,仅使用从在测功机上进行的次最大递增运动测试(心肺运动测试,CPET)中获得的心率时间序列,通过递归分析(RQA)自动识别 AerT。我们发现,基于递归量化(RQE)方法计算的确定性最小值,是识别发生一般性代谢转变的时间点的 RQA 特征。在这些转变中,基于最大凸度的准则可以检测到第一个代谢阈值。普通最小二乘回归分析表明,由 RQA 估计的 AerT 时的耗氧量(VO )、心率(HR)和工作量值与由 CPET 估计的 AerT 值高度相关(r > 0.64)。对于 HR 和 VO ,平均值差异小于 2%,对于工作量,平均值差异小于 11%。在 AerT 时 HR 的技术误差 <8%;在 AerT 时,所有变量的内类相关系数值均为中度(≥0.66)。因此,该系统代表了一种仅依靠心率时间序列来检测 AerT 的有用方法,一旦针对不同的活动进行验证,将来就可以很容易地在从便携式心率监测器获取数据的应用程序中实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fef/9916349/8ae176e24c0b/ijerph-20-01998-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验