School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
Int J Environ Res Public Health. 2023 Jan 31;20(3):2508. doi: 10.3390/ijerph20032508.
Ship emissions contribute substantial air pollutants when at berth. However, the complexity and diversity of the marine fuels utilized hinder our understanding and mapping of the characteristics of ship emissions. Herein, we applied GC × GC-MS to analyze the components of marine fuel oils. Owing to the high separation capacity of GC × GC-MS, 11 classes of organic compounds, including -alkanes, alkenes, and cyclo-alkanes, which can hardly be resolved by traditional one-dimensional GC-MS, were detected. Significant differences are observed between light (-10# and 0#) and heavy (120# and 180#) fuels. Notably, -10# and 0# diesel fuels are more abundant in -alkanes (4449%), while in 120# and 180#, heavy fuels -alkanes only account for 8%. Significant enhancement of naphthalene proportions is observed in heavy fuels (20%) compared to diesel fuels (23%). Hopanes are detected in all marine fuels and are especially abundant in heavy marine fuels. The volatility bins, one-dimensional volatility-based set (VBS), and two-dimensional VBS (volatility-polarity distributions) of marine fuel oils are investigated. Although IVOCs still take dominance (62-66%), the proportion of SVOCs in heavy marine fuels is largely enhanced, accounting for 30% compared to 612% in diesel fuels. Furthermore, the SVOC/IVOC ratio could be applied to distinguish light and heavy marine fuel oils. The SVOC/IVOC ratios for -10# diesel fuel, 0# diesel fuel, 120# heavy marine fuel, and 180# heavy marine fuel are 0.085 ± 0.046, 0.168 ± 0.159, 0.504, and 0.439 ± 0.021, respectively. Our work provides detailed information on marine fuel compositions and could be further implemented in estimating organic emissions and secondary organic aerosol (SOA) formation from marine fuel storage and evaporation processes.
船舶在停泊时排放大量空气污染物。然而,由于所用海洋燃料的复杂性和多样性,我们对船舶排放物的特性的理解和测绘受到阻碍。在此,我们应用 GC×GC-MS 来分析船用燃油的成分。由于 GC×GC-MS 的高分离能力,可以检测到 11 类有机化合物,包括传统一维 GC-MS 难以分辨的 -烷烃、烯烃和环烷烃。轻燃料(-10#和 0#)和重燃料(120#和 180#)之间存在显著差异。值得注意的是,-10#和 0#柴油燃料中 -烷烃含量较高(44%49%),而 120#和 180#重燃料中 -烷烃仅占 8%。与柴油燃料(2%3%)相比,重燃料中萘的比例显著增加(20%)。所有船用燃料中均检测到藿烷,尤其是重船用燃料中含量丰富。研究了船用燃油的挥发性箱、一维基于挥发性的集合(VBS)和二维 VBS(挥发性-极性分布)。尽管 IVOCs 仍占主导地位(62%66%),但重船用燃料中 SVOCs 的比例大大增加,占30%,而柴油燃料中仅占 6%~12%。此外,SVOC/IVOC 比值可用于区分轻、重船用燃油。-10#柴油燃料、0#柴油燃料、120#重船用燃料和 180#重船用燃料的 SVOC/IVOC 比值分别为 0.085±0.046、0.168±0.159、0.504 和 0.439±0.021。我们的工作提供了有关船用燃料成分的详细信息,并可进一步用于估算海洋燃料储存和蒸发过程中的有机排放和二次有机气溶胶(SOA)的形成。