Suppr超能文献

预测炎症性肠病患者在COVID-19大流行期间行为变化的计算模拟模型:对两个日本地区人群的分析。

Computational Simulation Model to Predict Behavior Changes in Inflammatory Bowel Disease Patients during the COVID-19 Pandemic: Analysis of Two Regional Japanese Populations.

作者信息

Suzuki Gen, Iwakiri Ryuichi, Udagawa Eri, Ma Sindy, Takayama Ryoko, Nishiura Hiroshi, Nakamura Koshi, Burns Samuel P, D'Alessandro Paul Michael, Fernandez Jovelle

机构信息

Japan Medical Office, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan.

PricewaterhouseCoopers Advisory Services LLC, Philadelphia, PA 19103, USA.

出版信息

J Clin Med. 2023 Jan 18;12(3):757. doi: 10.3390/jcm12030757.

Abstract

Managing inflammatory bowel disease (IBD) is a major challenge for physicians and patients during the COVID-19 pandemic. To understand the impact of the pandemic on patient behaviors and disruptions in medical care, we used a combination of population-based modeling, system dynamics simulation, and linear optimization. Synthetic IBD populations in Tokyo and Hokkaido were created by localizing an existing US-based synthetic IBD population using data from the Ministry of Health, Labor, and Welfare in Japan. A clinical pathway of IBD-specific disease progression was constructed and calibrated using longitudinal claims data from JMDC Inc for patients with IBD before and during the COVID-19 pandemic. Key points considered for disruptions in patient behavior (demand) and medical care (supply) were diagnosis of new patients, clinic visits for new patients seeking care and diagnosed patients receiving continuous care, number of procedures, and the interval between procedures or biologic prescriptions. COVID-19 had a large initial impact and subsequent smaller impacts on demand and supply despite higher infection rates. Our population model (Behavior Predictor) and patient treatment simulation model (Demand Simulator) represent the dynamics of clinical care demand among patients with IBD in Japan, both in recapitulating historical demand curves and simulating future demand during disruption scenarios, such as pandemic, earthquake, and economic crisis.

摘要

在新冠疫情期间,管理炎症性肠病(IBD)对医生和患者来说都是一项重大挑战。为了解疫情对患者行为及医疗服务中断的影响,我们综合运用了基于人群的建模、系统动力学模拟和线性优化方法。通过利用日本厚生劳动省的数据对现有的美国合成IBD人群进行本地化处理,创建了东京和北海道的合成IBD人群。使用JMDC公司提供的IBD患者在新冠疫情之前及期间的纵向理赔数据,构建并校准了IBD特定疾病进展的临床路径。在考虑患者行为(需求)和医疗服务(供给)中断时的关键点包括新患者的诊断、寻求治疗的新患者和接受持续治疗的确诊患者的门诊就诊、手术数量以及手术或生物制剂处方之间的间隔。尽管感染率较高,但新冠疫情对需求和供给最初产生了较大影响,随后影响较小。我们的人群模型(行为预测器)和患者治疗模拟模型(需求模拟器)既能够再现历史需求曲线,又能够在诸如疫情、地震和经济危机等干扰情景下模拟未来需求,体现了日本IBD患者临床护理需求的动态变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8be2/9917920/2c2f94817258/jcm-12-00757-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验