Suppr超能文献

高熵合金的变形机制与加工图(基于齐纳-霍洛蒙参数的加工图呈现):综述

Deformation Mechanisms and Processing Maps for High Entropy Alloys (Presentation of Processing Maps in Terms of Zener-Hollomon Parameter): Review.

作者信息

Jeong Hee-Tae, Kim Woo Jin

机构信息

Department of Materials Science and Engineering, Hongik University, Mapo-gu, Sangsu-dong 72-1, Seoul 121-791, Republic of Korea.

出版信息

Materials (Basel). 2023 Jan 18;16(3):919. doi: 10.3390/ma16030919.

Abstract

In this review paper, the hot compressive deformation mechanisms and processing maps of high-entropy alloys (HEAs) with different chemical compositions and crystal structures are analyzed. The stress exponent () values measured from the series of compression tests for the HEAs performed at different temperatures and strain rates are distributed between 3 and 35, and they are most populated between 3 and 7. Power law breakdown (PLB) is found to typically occur at / ≤ 0.6 (where is the testing temperature and is the melting temperature). In AlCrMnFeCoNi ( = 0-1) and AlCrFeCoNi ( = 0-1) HEAs, tends to decrease as the concentration of Al increases, suggesting that Al acts as a solute atom that exerts a drag force on dislocation slip motion at high temperatures. The values of activation energy for plastic flow () for the HEAs are most populated in the range between 300 and 400 kJ/mol. These values are close to the activation energy of the tracer diffusivity of elements in the HEAs ranging between 240 and 408 kJ/mol. The power dissipation efficiency η of the HEAs is shown to follow a single equation, which is uniquely related to . Flow instability for the HEAs is shown to occur near = 7, implying that the onset of flow instability occurs at the transition from power law creep to PLB. Processing maps for the HEAs are demonstrated to be represented by plotting η as a function of the Zener-Hollomon parameter ( = expQcRT, where R is the gas constant). Flow stability prevails at ≤ 10 s, while flow instability does at ≥ 3 × 10 s.

摘要

在这篇综述论文中,分析了具有不同化学成分和晶体结构的高熵合金(HEAs)的热压缩变形机制和加工图。在不同温度和应变速率下对HEAs进行的一系列压缩试验测得的应力指数()值分布在3至35之间,且大多集中在3至7之间。发现幂律失效(PLB)通常发生在/≤0.6(其中为测试温度,为熔化温度)时。在AlCrMnFeCoNi(= 0 - 1)和AlCrFeCoNi(= 0 - 1)高熵合金中,随着Al浓度的增加而趋于降低,这表明Al作为溶质原子在高温下对位错滑移运动施加拖曳力。HEAs的塑性流动激活能()值大多集中在300至400 kJ/mol范围内。这些值与HEAs中元素示踪扩散率的激活能接近,其范围在240至408 kJ/mol之间。结果表明,HEAs的功率耗散效率η遵循一个单一方程,该方程与唯一相关。HEAs的流动不稳定性在≈7时出现,这意味着流动不稳定性的起始发生在从幂律蠕变到PLB的转变处。通过绘制η作为齐纳 - 霍洛蒙参数(= expQcRT,其中R为气体常数)的函数,证明了HEAs的加工图。当≤10 s时流动稳定性占主导,而当≥3×10 s时流动不稳定性占主导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b683/9918241/4e0687f4d01d/materials-16-00919-g001.jpg

相似文献

2
Microstructure Refinement of a Transformation-Induced Plasticity High-Entropy Alloy.
Materials (Basel). 2021 Mar 4;14(5):1196. doi: 10.3390/ma14051196.
3
Constitutive Equation and Hot Processing Map of Mg-16Al Magnesium Alloy Bars.
Materials (Basel). 2020 Jul 12;13(14):3107. doi: 10.3390/ma13143107.
4
Effects of molybdenum on hot deformation behavior and microstructural evolution of FeMnCoCrC high entropy alloys.
Sci Technol Adv Mater. 2023 Mar 14;24(1):2186119. doi: 10.1080/14686996.2023.2186119. eCollection 2023.
5
Hot Deformation Characteristics and 3-D Processing Map of a High-Titanium Nb-Micro-alloyed Steel.
Materials (Basel). 2020 Mar 25;13(7):1501. doi: 10.3390/ma13071501.
6
Study on the Hot Deformation Behavior of Stainless Steel AISI 321.
Materials (Basel). 2022 Jun 7;15(12):4057. doi: 10.3390/ma15124057.
7
Optimization of thermal deformation process parameters of 2219 Al matrix composites.
Heliyon. 2024 Apr 30;10(9):e30082. doi: 10.1016/j.heliyon.2024.e30082. eCollection 2024 May 15.
8
Hot Deformation Behavior of a New Al-Mn-Sc Alloy.
Materials (Basel). 2019 Dec 19;13(1):22. doi: 10.3390/ma13010022.
9
Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloy.
Sci Technol Adv Mater. 2020 Jan 13;21(1):43-55. doi: 10.1080/14686996.2020.1714476. eCollection 2020.
10
Deformation mechanism in AlCoCrFeNi Σ3(111)[11̄0] high entropy alloys - molecular dynamics simulations.
RSC Adv. 2020 Jul 24;10(46):27688-27696. doi: 10.1039/d0ra01885f. eCollection 2020 Jul 21.

引用本文的文献

1
Tailoring Mechanical and Magnetic Properties in Dual-Phase FeCoNi(CuAl) High-Entropy Alloy.
Materials (Basel). 2023 Nov 18;16(22):7222. doi: 10.3390/ma16227222.

本文引用的文献

1
Microstructure Refinement of a Transformation-Induced Plasticity High-Entropy Alloy.
Materials (Basel). 2021 Mar 4;14(5):1196. doi: 10.3390/ma14051196.
3
Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloy.
Sci Technol Adv Mater. 2020 Jan 13;21(1):43-55. doi: 10.1080/14686996.2020.1714476. eCollection 2020.
4
Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.
Nano Lett. 2017 Mar 8;17(3):1569-1574. doi: 10.1021/acs.nanolett.6b04716. Epub 2017 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验