Cai Guanyu, Delgado Teresa, Richard Cyrille, Viana Bruno
Université PSL, Chimie ParisTech, CNRS, IRCP, Institut de Recherche de Chimie Paris, 75005 Paris, France.
Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, 75006 Paris, France.
Materials (Basel). 2023 Jan 28;16(3):1132. doi: 10.3390/ma16031132.
The property of persistent luminescence shows great potential for anti-counterfeiting technology and imaging by taking advantage of a background-free signal. Current anti-counterfeiting technologies face the challenge of low security and the inconvenience of being limited to visible light emission, as emitters in the NIR optical windows are required for such applications. Here, we report the preparation of a series of ZnGaSnO nanoparticles (ZGSO NPs) with persistent luminescence in the first and second near-infrared window to overcome these challenges. ZGSO NPs, doped with transition-metal (Cr and/or Ni) and in some cases co-doped with rare-earth (Er) ions, were successfully prepared using an improved solid-state method with a subsequent milling process to reach sub-200 nm size particles. X-ray diffraction and absorption spectroscopy were used for the analysis of the structure and local crystal field around the dopant ions at different Sn/Ga ratios. The size of the NPs was ~150 nm, measured by DLS. Doped ZGSO NPs exhibited intense photoluminescence in the range from red, NIR-I to NIR-II, and even NIR-III, under UV radiation, and showed persistent luminescence at 700 nm (NIR-I) and 1300 nm (NIR-II) after excitation removal. Hence, these NPs were evaluated for multi-level anti-counterfeiting technology.
持久发光特性利用无背景信号,在防伪技术和成像方面展现出巨大潜力。当前的防伪技术面临安全性低以及限于可见光发射带来不便的挑战,因为此类应用需要近红外光学窗口中的发光体。在此,我们报告了一系列在第一和第二近红外窗口具有持久发光特性的ZnGaSnO纳米颗粒(ZGSO NPs)的制备,以克服这些挑战。通过改进的固态方法并随后进行研磨工艺,成功制备了掺杂过渡金属(Cr和/或Ni)且在某些情况下共掺杂稀土(Er)离子的ZGSO NPs,以获得尺寸小于200 nm的颗粒。利用X射线衍射和吸收光谱分析了不同Sn/Ga比下掺杂离子周围的结构和局部晶体场。通过动态光散射测量,纳米颗粒的尺寸约为150 nm。掺杂的ZGSO NPs在紫外辐射下在从红色、近红外-I到近红外-II甚至近红外-III的范围内表现出强烈的光致发光,并且在去除激发后在700 nm(近红外-I)和1300 nm(近红外-II)处表现出持久发光。因此,对这些纳米颗粒进行了多级防伪技术评估。