Ghadimi Hamed, Ding Huan, Emanet Selami, Talachian Mojtaba, Cox Chase, Eller Michael, Guo Shengmin
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
MELD Manufacturing Corporation, 200 Technology Dr, Christiansburg, VA 24073, USA.
Materials (Basel). 2023 Feb 2;16(3):1278. doi: 10.3390/ma16031278.
The solid-state additive friction stir deposition (AFSD) process is a layer-by-layer metal 3D-printing technology. In this study, AFSD is used to fabricate Al-Cu-Li 2050 alloy parts. The hardness values for various regions of the as-deposited built parts are measured, and the results are contrasted with those of the feedstock material. The as-fabricated Al2050 parts are found to have a unique hardness distribution due to the location-specific variations in the processing temperature profile. The XRD results indicate the presence of the secondary phases in the deposited parts, and EDS mapping confirms the formation of detectable alloying particles in the as-deposited Al2050 matrix. The AFSD thermal-mechanical process causes the unique hardness distribution and the reduced microhardness level in the AFSD components, in contrast to those of the feedstock material.
固态添加剂摩擦搅拌沉积(AFSD)工艺是一种逐层金属3D打印技术。在本研究中,采用AFSD制造Al-Cu-Li 2050合金零件。测量了沉积成型零件各个区域的硬度值,并将结果与原料材料的硬度值进行对比。由于加工温度分布的位置特定变化,发现所制造的Al2050零件具有独特的硬度分布。XRD结果表明沉积零件中存在次生相,EDS映射证实了在沉积的Al2050基体中形成了可检测的合金颗粒。与原料材料相比,AFSD热机械工艺导致AFSD组件中出现独特的硬度分布和降低的显微硬度水平。