Yakubov Vladislav, Ostergaard Halsey, Bhagavath Shishira, Leung Chu Lun Alex, Hughes James, Yasa Evren, Khezri Mani, Löschke Sandra K, Li Qing, Paradowska Anna M
School of Civil Engineering, The University of Sydney, Sydney, NSW Australia.
Australian Nuclear Science and Technology Organisation, Kirrawee, NSW Australia.
Prog Addit Manuf. 2025;10(8):5281-5297. doi: 10.1007/s40964-024-00904-6. Epub 2024 Dec 10.
Additive friction stir deposition (AFSD) is an emerging solid-state non-fusion additive manufacturing (AM) technology, which produces parts with wrought-like material properties, high deposition rates, and low residual stresses. However, impact of process interruption on defect formation and mechanical properties has not yet been well addressed in the literature. In this study, Al6061 aluminium structure with two final heights and deposition interruption is successfully manufactured via AFSD and characterised. Defect analysis conducted via optical microscopy, electron microscopy, and X-ray computed tomography reveals > 99% relative density with minimal defects in centre of the parts. However, tunnel defects at interface between substrate and deposit as well as kissing bonds are present. Edge of deposit contains tunnel defects due to preference for greater material deposition on advancing side of rotating tool. Virtual machining highlights the ability to remove defects via post-processing, avoiding mechanical performance impact of stress concentrating pores. Electron backscatter diffraction revealed regions with localised shear bands that contain 1-5 µm equivalent circular diameter grains. Kissing bonds are exhibited in areas separated by large grain size difference. Meanwhile, Vickers hardness testing reveals hardness variation with deposit height. This work advances the understanding of complex microstructure development, material flow, and mechanical behaviour of AFSD Al6061 alloy.
The online version contains supplementary material available at 10.1007/s40964-024-00904-6.
搅拌摩擦增材沉积(AFSD)是一种新兴的固态非熔合增材制造(AM)技术,该技术制造的零件具有类似锻造的材料性能、高沉积速率和低残余应力。然而,工艺中断对缺陷形成和力学性能的影响在文献中尚未得到很好的阐述。在本研究中,通过AFSD成功制造了具有两种最终高度且存在沉积中断的Al6061铝合金结构并进行了表征。通过光学显微镜、电子显微镜和X射线计算机断层扫描进行的缺陷分析表明,零件中心的相对密度>99%,缺陷极少。然而,在基材与沉积物之间的界面处存在隧道缺陷以及微搭界。沉积物边缘由于旋转工具前进侧材料沉积较多而存在隧道缺陷。虚拟加工突出了通过后处理去除缺陷的能力,避免了应力集中孔隙对机械性能的影响。电子背散射衍射揭示了存在局部剪切带的区域,这些区域包含等效圆直径为1 - 5 µm的晶粒。在由大晶粒尺寸差异分隔的区域中出现了微搭界。同时,维氏硬度测试揭示了硬度随沉积物高度的变化。这项工作增进了对AFSD Al6061合金复杂微观结构演变、材料流动和力学行为的理解。
在线版本包含可在10.1007/s40964-024-00904-6获取的补充材料。