Suppr超能文献

通过多步原位负载制备的含氧化石墨烯细菌纤维素膜:细菌菌株和负载模式对纳米复合材料性能的影响

GO-Enabled Bacterial Cellulose Membranes by Multistep, In Situ Loading: Effect of Bacterial Strain and Loading Pattern on Nanocomposite Properties.

作者信息

Gabryś Tobiasz, Fryczkowska Beata, Jančič Urška, Trček Janja, Gorgieva Selestina

机构信息

Department of Material Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland.

Department of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland.

出版信息

Materials (Basel). 2023 Feb 2;16(3):1296. doi: 10.3390/ma16031296.

Abstract

This paper presents the results of research on the preparation and properties of GO/BC nanocomposite from bacterial cellulose (BC) modified with graphene oxide (GO) using the in situ method. Two bacterial strains were used for the biosynthesis of the BC: LMG 18909 and LMG 18788. A simple biosynthesis method was developed, where GO water dispersion was added to reinforced acetic acid-ethanol (RAE) medium at concentrations of 10 ppm, 25 ppm, and 50 ppm at 24 h and 48 h intervals. As a result, a GO/BC nanocomposite membrane was obtained, characterized by tensile strength greater by 150% as compared with the pure BC (̴ 50 MPa) and lower volume resistivity of ~4 ∙ 10 Ω × cm. Moreover, GO addition increases membrane thickness up to ~10% and affects higher mass production, especially with low GO concentration. All of this may indicate the possibility of using GO/BC membranes in fuel cell applications.

摘要

本文介绍了采用原位法由氧化石墨烯(GO)改性细菌纤维素(BC)制备GO/BC纳米复合材料及其性能的研究结果。使用了两种细菌菌株来生物合成BC:LMG 18909和LMG 18788。开发了一种简单的生物合成方法,即在24小时和48小时间隔时,将浓度为10 ppm、25 ppm和50 ppm的GO水分散体添加到强化乙酸 - 乙醇(RAE)培养基中。结果,获得了一种GO/BC纳米复合膜,其特征在于拉伸强度比纯BC(约50 MPa)高150%,体积电阻率约为4×10Ω×cm且更低。此外,添加GO会使膜厚度增加至约10%,并影响更高的批量生产,尤其是在低GO浓度下。所有这些都可能表明在燃料电池应用中使用GO/BC膜的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c92e/9921428/cb0f8bb8192b/materials-16-01296-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验