Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
Int J Biol Macromol. 2023 Jul 31;244:125368. doi: 10.1016/j.ijbiomac.2023.125368. Epub 2023 Jun 15.
The microbial production of cellulose using different bacterial species has been extensively examined for various industrial applications. However, the cost-effectiveness of all these biotechnological processes is strongly related to the culture medium for bacterial cellulose (BC) production. Herein, we examined a simple and modified procedure for preparing grape pomace (GP) hydrolysate, without enzymatic treatment, as a sole growth medium for BC production by acetic acid bacteria (AAB). The central composite design (CCD) was used to optimise the GP hydrolysate preparation toward the highest reducing sugar contents (10.4 g/L) and minimal phenolic contents (4.8 g/L). The experimental screening of 4 differently prepared hydrolysates and 20 AAB strains identified the recently described species Komagataeibacter melomenusus AV436 as the most efficient BC producer (up to 1.24 g/L dry BC membrane), followed by Komagataeibacter xylinus LMG 1518 (up to 0.98 g/L dry BC membrane). The membranes were synthesized in only 4 days of bacteria culturing, 1 st day with shaking, followed by 3 days of static incubation. The produced BC membranes in GP-hydrolysates showed, in comparison to the membranes made in a complex RAE medium 34 % reduction of crystallinity index with the presence of diverse cellulose allomorphs, presence of GP-related components within the BC network responsible for the increase of hydrophobicity, the reduction of thermal stability and 48.75 %, 13.6 % and 43 % lower tensile strength, tensile modulus, and elongation, respectively. Here presented study is the first report on utilising a GP-hydrolysate without enzymatic treatment as a sole culture medium for efficient BC production by AAB, with recently described species Komagataeibacter melomenusus AV436 as the most efficient producer in this type of food-waste material. The scale-up protocol of the scheme presented here will be needed for the cost-optimisation of BC production at the industrial levels.
利用不同细菌种类生产纤维素的微生物方法已被广泛用于各种工业应用。然而,所有这些生物技术过程的成本效益都与生产细菌纤维素(BC)的培养基密切相关。在此,我们研究了一种简单且经过改良的葡萄渣(GP)水解物制备方法,无需酶处理,即可将其作为醋酸菌(AAB)生产 BC 的唯一生长培养基。采用中心复合设计(CCD)优化 GP 水解物的制备,以获得最高的还原糖含量(10.4g/L)和最低的酚含量(4.8g/L)。通过对 4 种不同制备的水解物和 20 株 AAB 菌株的实验筛选,确定了最近描述的Komagataeibacter melomenusus AV436 种为最有效的 BC 生产菌(最高可达 1.24g/L 干 BC 膜),其次是Komagataeibacter xylinus LMG 1518(最高可达 0.98g/L 干 BC 膜)。在仅 4 天的细菌培养过程中就合成了这些膜,第 1 天进行震荡培养,随后进行 3 天的静置培养。与在复杂的 RAE 培养基中生成的膜相比,在 GP 水解物中生成的 BC 膜的结晶度指数降低了 34%,其中存在不同的纤维素变体,BC 网络中存在与 GP 相关的成分,这是导致疏水性增加的原因,同时还降低了热稳定性,分别使拉伸强度、拉伸模量和伸长率降低了 48.75%、13.6%和 43%。本研究首次报道了利用未经酶处理的 GP 水解物作为 AAB 高效生产 BC 的唯一培养基,其中最近描述的Komagataeibacter melomenusus AV436 种是这种类型的食品废料中最有效的生产菌。需要制定该方案的扩大规模方案,以优化工业水平的 BC 生产成本。