Suppr超能文献

多注意力机制增强 YOLOX 用于遥感目标检测。

Multiple Attention Mechanism Enhanced YOLOX for Remote Sensing Object Detection.

机构信息

Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2023 Jan 22;23(3):1261. doi: 10.3390/s23031261.

Abstract

The object detection technologies of remote sensing are widely used in various fields, such as environmental monitoring, geological disaster investigation, urban planning, and military defense. However, the detection algorithms lack the robustness to detect tiny objects against complex backgrounds. In this paper, we propose a Multiple Attention Mechanism Enhanced YOLOX (MAME-YOLOX) algorithm to address the above problem. Firstly, the CBAM attention mechanism is introduced into the backbone of the YOLOX, so that the detection network can focus on the saliency information. Secondly, to identify the high-level semantic information and enhance the perception of local geometric feature information, the Swin Transformer is integrated into the YOLOX's neck module. Finally, instead of GIOU loss, CIoU loss is adopted to measure the bounding box regression loss, which can prevent the GIoU from degenerating into IoU. The experimental results of three publicly available remote sensing datasets, namely, AIBD, HRRSD, and DIOR, show that the algorithm proposed possesses better performance, both in relation to quantitative and qualitative aspects.

摘要

遥感目标检测技术广泛应用于环境监测、地质灾害调查、城市规划和军事防御等各个领域。然而,检测算法缺乏对复杂背景下微小目标的鲁棒性。本文提出了一种多注意力机制增强 YOLOX(MAME-YOLOX)算法来解决上述问题。首先,将 CBAM 注意力机制引入 YOLOX 的骨干网络中,使检测网络能够关注显著信息。其次,为了识别高层语义信息并增强对局部几何特征信息的感知,将 Swin Transformer 集成到 YOLOX 的颈部模块中。最后,采用 CIoU 损失来衡量边界框回归损失,而不是 GIOU 损失,这可以防止 GIoU 退化为 IoU。在三个公开的遥感数据集,即 AIBD、HRRSD 和 DIOR 上的实验结果表明,该算法在定量和定性方面都具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe3a/9919846/638fcab772fa/sensors-23-01261-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验