CF-YOLOX:一种用于多尺度目标检测的自动驾驶检测模型。
CF-YOLOX: An Autonomous Driving Detection Model for Multi-Scale Object Detection.
机构信息
School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China.
出版信息
Sensors (Basel). 2023 Apr 7;23(8):3794. doi: 10.3390/s23083794.
In self-driving cars, object detection algorithms are becoming increasingly important, and the accurate and fast recognition of objects is critical to realize autonomous driving. The existing detection algorithms are not ideal for the detection of small objects. This paper proposes a YOLOX-based network model for multi-scale object detection tasks in complex scenes. This method adds a CBAM-G module to the backbone of the original network, which performs grouping operations on CBAM. It changes the height and width of the convolution kernel of the spatial attention module to 7 × 1 to improve the ability of the model to extract prominent features. We proposed an object-contextual feature fusion module, which can provide more semantic information and improve the perception of multi-scale objects. Finally, we considered the problem of fewer samples and less loss of small objects and introduced a scaling factor that could increase the loss of small objects to improve the detection ability of small objects. We validated the effectiveness of the proposed method on the KITTI dataset, and the mAP value was 2.46% higher than the original model. Experimental comparisons showed that our model achieved superior detection performance compared to other models.
在自动驾驶汽车中,目标检测算法变得越来越重要,而对物体的准确、快速识别对于实现自动驾驶至关重要。现有的检测算法对于小物体的检测并不理想。本文提出了一种基于 YOLOX 的网络模型,用于复杂场景中的多尺度目标检测任务。该方法在原始网络的骨干中添加了一个 CBAM-G 模块,对 CBAM 进行分组操作。它将空间注意力模块卷积核的高度和宽度更改为 7×1,以提高模型提取突出特征的能力。我们提出了一种目标上下文特征融合模块,可以提供更多的语义信息,提高多尺度目标的感知能力。最后,我们考虑了小样本和小物体损失较少的问题,并引入了一个缩放因子,可以增加小物体的损失,以提高小物体的检测能力。我们在 KITTI 数据集上验证了所提出方法的有效性,mAP 值比原始模型高 2.46%。实验比较表明,与其他模型相比,我们的模型具有更好的检测性能。
相似文献
Sensors (Basel). 2023-4-7
Sensors (Basel). 2023-9-1
Sensors (Basel). 2022-5-23
Sensors (Basel). 2023-1-22
Sensors (Basel). 2024-4-24
Sensors (Basel). 2023-11-22
Sensors (Basel). 2022-9-15
Comput Intell Neurosci. 2021
Sensors (Basel). 2022-3-18
Math Biosci Eng. 2022-9-1
引用本文的文献
PeerJ Comput Sci. 2024-4-30
Sensors (Basel). 2023-9-28
本文引用的文献
Entropy (Basel). 2018-4-17
IEEE Trans Pattern Anal Mach Intell. 2015-9