Suppr超能文献

基于智能手机的露水计算加速:通过进化算法进行体内实验设置。

Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm.

机构信息

ISISTAN (UNICEN-CONICET), Tandil 7000, Argentina.

Department of Information Systems, University of Agder (UiA), 4604 Kristiansand, Norway.

出版信息

Sensors (Basel). 2023 Jan 26;23(3):1388. doi: 10.3390/s23031388.

Abstract

Dew computing aims to minimize the dependency on remote clouds by exploiting nearby nodes for solving non-trivial computational tasks, e.g., AI inferences. Nowadays, smartphones are good candidates for computing nodes; hence, smartphone clusters have been proposed to accomplish this task and load balancing is frequently a subject of research. Using the same real-i.e., in vivo-testbeds to evaluate different load balancing strategies based on energy utilization is challenging and time consuming. In principle, test repetition requires a platform to control battery charging periods between repetitions. Our Motrol hard-soft device has such a capability; however, it lacks a mechanism to assure and reduce the time in which all smartphone batteries reach the level required by the next test. We propose an evolutionary algorithm to execute smartphone battery (dis)charging plans to minimize test preparation time. Charging plans proposed by the algorithm include charging at different speeds, which is achieved by charging at maximum speed while exercising energy hungry components (the CPU and screen). To evaluate the algorithm, we use various charging/discharging battery traces of real smartphones and we compare the time-taken for our method to collectively prepare a set of smartphones versus that of individually (dis)charging all smartphones at maximum speed.

摘要

露水计算旨在通过利用附近的节点来解决非平凡的计算任务(例如 AI 推理),从而减少对远程云的依赖。如今,智能手机是计算节点的理想选择;因此,已经提出了智能手机集群来完成这项任务,而负载均衡经常是研究的主题。使用相同的真实(即体内)测试平台来评估基于能量利用的不同负载均衡策略具有挑战性且耗时。原则上,测试重复需要一个平台来控制重复之间的电池充电周期。我们的 Motrol 软硬设备具有这种能力;但是,它缺乏一种机制来确保并减少所有智能手机电池达到下一次测试所需水平的时间。我们提出了一种进化算法来执行智能手机电池(充电/放电)计划,以最小化测试准备时间。该算法提出的充电计划包括以不同的速度充电,这是通过在执行耗电组件(CPU 和屏幕)时以最大速度充电来实现的。为了评估该算法,我们使用了真实智能手机的各种充电/放电电池轨迹,并比较了我们的方法用于集体准备一组智能手机所需的时间与单独(最大速度)为所有智能手机充电/放电所需的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/9919676/148c2705b6e2/sensors-23-01388-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验