Suppr超能文献

自主交叉口管理:最优轨迹与高效调度。

Autonomous Intersection Management: Optimal Trajectories and Efficient Scheduling.

机构信息

CIAD UMR 7533, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France.

Institute of Information Systems (IIG), University of Applied Sciences and Arts Western Switzerland (HES-SO), 3960 Sierre, Switzerland.

出版信息

Sensors (Basel). 2023 Jan 29;23(3):1509. doi: 10.3390/s23031509.

Abstract

Intersections are at the core of congestion in urban areas. After the end of the Second World War, the problem of intersection management has benefited from a growing body of advances to address the optimization of the traffic lights' phase splits, timing, and offset. These contributions have significantly improved traffic safety and efficiency in urban areas. However, with the growth of transportation demand and motorization, traffic lights show their limits. At the end of the 1990s, the perspective of autonomous and connected driving systems motivated researchers to introduce a paradigm shift for controlling intersections. This new paradigm is well known today as autonomous intersection management (AIM). It harnesses the self-organization ability of future vehicles to provide more accurate control approaches that use the smallest available time window to reach unprecedented traffic performances. This is achieved by optimizing two main points of the interaction of connected and autonomous vehicles at intersections: the motion control of vehicles and the schedule of their accesses. Considering the great potential of AIM and the complexity of the problem, the proposed approaches are very different, starting from various assumptions. With the increasing popularity of AIM, this paper provides readers with a comprehensive vision of noticeable advances toward enhancing traffic efficiency. It shows that it is possible to tailor vehicles' speed and schedule according to the traffic demand by using distributed particle swarm optimization. Moreover, it brings the most relevant contributions in the light of traffic engineering, where flow-speed diagrams are used to measure the impact of the proposed optimizations. Finally, this paper presents the current challenging issues to be addressed.

摘要

交叉口是城市拥堵的核心。第二次世界大战结束后,交叉口管理问题得益于大量先进技术的发展,这些技术旨在优化交通信号灯的相位划分、定时和相位差。这些贡献极大地提高了城市地区的交通安全和效率。然而,随着交通需求和机动车化的增长,交通信号灯显示出其局限性。在 20 世纪 90 年代末,自动驾驶和车联网系统的出现促使研究人员引入了交叉口控制的范式转变。这个新的范式今天被称为自主交叉口管理(AIM)。它利用未来车辆的自组织能力,提供更精确的控制方法,利用最小的可用时间窗口达到前所未有的交通性能。这是通过优化互联和自动驾驶车辆在交叉口的两个主要交互点来实现的:车辆的运动控制和它们进入的时间表。考虑到 AIM 的巨大潜力和问题的复杂性,所提出的方法非常不同,从各种假设开始。随着 AIM 的日益普及,本文为读者提供了一个全面的视角,了解提高交通效率的显著进展。它表明,通过使用分布式粒子群优化,可以根据交通需求调整车辆的速度和时间表。此外,它根据交通工程的需要,引入了最相关的贡献,其中流量-速度图用于衡量所提出的优化的影响。最后,本文提出了当前需要解决的挑战问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c41/9919423/36bfcb4a5110/sensors-23-01509-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验