Suppr超能文献

基于融合的可穿戴式物联网传感器平台,用于识别自闭症谱系障碍儿童的手势。

Fusion-Based Body-Worn IoT Sensor Platform for Gesture Recognition of Autism Spectrum Disorder Children.

机构信息

Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.

College of Information Technology, United Arab Emirates University (UAEU), Abu Dhabi 15551, United Arab Emirates.

出版信息

Sensors (Basel). 2023 Feb 3;23(3):1672. doi: 10.3390/s23031672.

Abstract

The last decade's developments in sensor technologies and artificial intelligence applications have received extensive attention for daily life activity recognition. Autism spectrum disorder (ASD) in children is a neurological development disorder that causes significant impairments in social interaction, communication, and sensory action deficiency. Children with ASD have deficits in memory, emotion, cognition, and social skills. ASD affects children's communication skills and speaking abilities. ASD children have restricted interests and repetitive behavior. They can communicate in sign language but have difficulties communicating with others as not everyone knows sign language. This paper proposes a body-worn multi-sensor-based Internet of Things (IoT) platform using machine learning to recognize the complex sign language of speech-impaired children. Optimal sensor location is essential in extracting the features, as variations in placement result in an interpretation of recognition accuracy. We acquire the time-series data of sensors, extract various time-domain and frequency-domain features, and evaluate different classifiers for recognizing ASD children's gestures. We compare in terms of accuracy the decision tree (DT), random forest, artificial neural network (ANN), and k-nearest neighbour (KNN) classifiers to recognize ASD children's gestures, and the results showed more than 96% recognition accuracy.

摘要

过去十年,传感器技术和人工智能应用的发展受到了广泛关注,这些技术被用于日常生活活动识别。儿童自闭症谱系障碍(ASD)是一种神经发育障碍,会导致社交互动、沟通和感官动作方面的严重损伤。患有 ASD 的儿童在记忆力、情绪、认知和社交技能方面存在缺陷。ASD 会影响儿童的沟通技巧和说话能力。ASD 儿童的兴趣和行为往往具有局限性和重复性,他们虽然可以使用手语进行交流,但不是每个人都懂手语,因此与他人交流存在困难。本文提出了一种基于机器的物联网(IoT)平台,该平台使用多传感器进行佩戴,用于识别言语障碍儿童的复杂手语。在提取特征时,最优传感器位置至关重要,因为放置位置的变化会导致识别准确率的不同。我们获取传感器的时间序列数据,提取各种时域和频域特征,并评估不同的分类器来识别 ASD 儿童的手势。我们比较了决策树(DT)、随机森林、人工神经网络(ANN)和 K 最近邻(KNN)分类器在识别 ASD 儿童手势方面的准确性,结果表明识别准确率超过 96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7869/9918961/1eb88a5fc206/sensors-23-01672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验