Suppr超能文献

基于远程边缘医疗诊所和医疗物联网的智能自闭症谱系障碍学习系统

Smart Autism Spectrum Disorder Learning System Based on Remote Edge Healthcare Clinics and Internet of Medical Things.

作者信息

Mohammed Mazin Abed, Alyahya Saleh, Mukhlif Abdulrahman Abbas, Abdulkareem Karrar Hameed, Hamouda Hassen, Lakhan Abdullah

机构信息

College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq.

Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Onaizah 2053, Saudi Arabia.

出版信息

Sensors (Basel). 2024 Nov 24;24(23):7488. doi: 10.3390/s24237488.

Abstract

Autism spectrum disorder (ASD) is a brain disorder causing issues among many young children. For children suffering from ASD, their learning ability is typically slower when compared to normal children. Therefore, many technologies aiming to teach ASD children with optimized learning approaches have emerged. With this motivation, this study presents a smart autism spectrum disorder learning system based on remote edge healthcare clinics and the Internet of Medical Things, the objective of which is to offer an online education and healthcare environment for autistic children. Concave and convex optimization constraints, such as accuracy, learning score, total processing time with deadline, and resource failure, are considered in the proposed system, with a focus on different autism education learning applications (e.g., speaking, reading, writing, and listening), while respecting the system's quality of service (QoS) requirements. All of the autism applications are executed on smartwatches, mobile devices, and edge healthcare nodes during their training and analysis in the system. This study presents the smartwatch autism spectrum data learning scheme (SM-ASDS), which consists of different offloading approaches, training analyses, and schemes. The SM-ASDS algorithm methodology includes partitioning offloading and deep convolutional neural network (DCNN)- and adaptive long short-term memory (ALSTM)-based schemes, which are used to train autism-related data on different nodes. The simulation results show that SM-ASDS improved the learning score by 30%, accuracy by 98%, and minimized the total processing time by 33%, when compared to baseline methods. Overall, this study presents an education learning system based on smartwatches for autistic patients, which facilitates educational training for autistic patients based on the use of artificial intelligence techniques.

摘要

自闭症谱系障碍(ASD)是一种导致许多幼儿出现问题的脑部疾病。对于患有自闭症谱系障碍的儿童来说,与正常儿童相比,他们的学习能力通常较慢。因此,许多旨在以优化学习方法教授自闭症谱系障碍儿童的技术应运而生。出于这一动机,本研究提出了一种基于远程边缘医疗诊所和医疗物联网的智能自闭症谱系障碍学习系统,其目标是为自闭症儿童提供一个在线教育和医疗环境。在所提出的系统中考虑了诸如准确性、学习分数、有截止期限的总处理时间和资源故障等凹凸优化约束,重点关注不同的自闭症教育学习应用(例如,说话、阅读、写作和听力),同时尊重系统的服务质量(QoS)要求。在系统的训练和分析过程中,所有自闭症应用都在智能手表、移动设备和边缘医疗节点上执行。本研究提出了智能手表自闭症谱系数据学习方案(SM-ASDS),它由不同的卸载方法、训练分析和方案组成。SM-ASDS算法方法包括分区卸载以及基于深度卷积神经网络(DCNN)和自适应长短期记忆(ALSTM)的方案,这些方案用于在不同节点上训练与自闭症相关的数据。仿真结果表明,与基线方法相比,SM-ASDS将学习分数提高了30%,准确性提高了98%,并将总处理时间最小化了33%。总体而言,本研究提出了一种基于智能手表的自闭症患者教育学习系统,该系统基于人工智能技术的应用促进了自闭症患者的教育培训。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eb5/11644725/80d1055a4097/sensors-24-07488-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验