Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.
Methods Mol Biol. 2023;2604:113-125. doi: 10.1007/978-1-0716-2867-6_9.
In plants, the segregation of genetic material is achieved by an acentrosomal, mitotic spindle. This macromolecular machinery consists of different microtubule subpopulations and interacting proteins. The majority of what we know about the assembly and shape control of the mitotic spindle arose from vertebrate model systems. The dynamic properties of the individual tubulin polymers are crucial for the accurate assembly of the spindle array and are modulated by microtubule-associated motor and non-motor proteins. The mitotic spindle relies on a phenomenon called poleward microtubule flux that is critical to establish spindle shape, chromosome alignment, and segregation. This flux is under control of the non-motor microtubule-associated proteins and force-generating motors. Despite the large number of (plant-specific) kinesin motor proteins expressed during mitosis, their mitotic roles remain largely elusive. Moreover, reports on mitotic spindle formation and shape control in higher plants are scarce. In this chapter, an overview of the basic principles and methods concerning live imaging of prometa- and metaphase spindles and the analysis of spindle microtubule flux using fluorescence recovery after photobleaching is provided.
在植物中,遗传物质的分离是通过无着丝粒的有丝纺锤体实现的。这种大分子机器由不同的微管亚群和相互作用的蛋白质组成。我们对有丝纺锤体的组装和形状控制的了解主要来自脊椎动物模型系统。单个微管聚合物的动态特性对于纺锤体阵列的精确组装至关重要,并且受到微管相关马达和非马达蛋白的调节。有丝纺锤体依赖于一种称为极向微管流的现象,这种现象对于建立纺锤体形状、染色体排列和分离至关重要。这种流动受非马达微管相关蛋白和产生力的马达的控制。尽管在有丝分裂期间表达了大量(植物特异性)驱动蛋白马达,但它们的有丝分裂作用仍然很大程度上难以捉摸。此外,关于高等植物有丝分裂纺锤体形成和形状控制的报道很少。在本章中,提供了关于活细胞成像的基本原理和方法的概述,以及使用光漂白后荧光恢复分析纺锤体微管流的概述。