Suppr超能文献

使用时空随机森林建模方法对 COVID-19 大流行期间涉及阿片类药物的死亡进行反事实分析。

A counterfactual analysis of opioid-involved deaths during the COVID-19 pandemic using a spatiotemporal random forest modeling approach.

机构信息

Department of Geographical Sciences, Center for Geospatial Information Science, University of Maryland, College Park, 20742, MD, USA.

Department of Geographical Sciences, Center for Geospatial Information Science, University of Maryland, College Park, 20742, MD, USA.

出版信息

Health Place. 2023 Mar;80:102986. doi: 10.1016/j.healthplace.2023.102986. Epub 2023 Feb 7.

Abstract

The global pandemic of SARS-CoV-2 (COVID-19) has been linked to adversely impacting individuals with opioid use disorder in the United States. This study focuses on analyzing opioid-involved mortality in the context of COVID-19 in the U.S. from a geospatial perspective. We investigated spatiotemporal patterns of opioid-involved deaths during 2020 and compared the spatiotemporal pattern of these deaths with patterns for the previous three years (2017-2019) to understand changes in the context of the COVID-19 pandemic. A counterfactual analysis framework together with a space-time random forest (STRF) model were used to estimate the increase in opioid-involved deaths related to the pandemic. To gain further insight into the relationship between opioid deaths and COVID-19-related factors, we built a space-time random forest model for the City of Chicago, that experienced a steep increase in opioid-related deaths during 2020. High ranking indicators identified by the model such as the number of positive COVID-19 cases adjusted by population and the change in stay-at-home dwell time during the pandemic were used to generate a vulnerability index for opioid overdoses during the COVID-19 pandemic in Chicago.

摘要

全球范围内 SARS-CoV-2(COVID-19)的大流行与美国阿片类药物使用障碍患者的不良影响有关。本研究重点从地理空间角度分析美国 COVID-19 背景下与阿片类药物相关的死亡率。我们调查了 2020 年期间与阿片类药物相关的死亡的时空模式,并将这些死亡的时空模式与前三年(2017-2019 年)的模式进行比较,以了解在 COVID-19 大流行背景下的变化。采用反事实分析框架和时空随机森林(STRF)模型来估计与大流行相关的阿片类药物死亡人数的增加。为了更深入地了解阿片类药物死亡与 COVID-19 相关因素之间的关系,我们为芝加哥市建立了一个时空随机森林模型,该模型在 2020 年期间经历了阿片类药物相关死亡人数的急剧增加。模型中排名较高的指标,如按人口调整的 COVID-19 阳性病例数和大流行期间居家时间的变化,被用于为 COVID-19 大流行期间芝加哥市的阿片类药物过量风险生成一个脆弱性指数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17f8/9902297/85cb56808552/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验