Suppr超能文献

减轻阿片类药物使用障碍预测中的社会人口统计学偏差:公平感知机器学习框架

Mitigating Sociodemographic Bias in Opioid Use Disorder Prediction: Fairness-Aware Machine Learning Framework.

作者信息

Yaseliani Mohammad, Noor-E-Alam Md, Hasan Md Mahmudul

机构信息

Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, United States.

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States.

出版信息

JMIR AI. 2024 Aug 20;3:e55820. doi: 10.2196/55820.

Abstract

BACKGROUND

Opioid use disorder (OUD) is a critical public health crisis in the United States, affecting >5.5 million Americans in 2021. Machine learning has been used to predict patient risk of incident OUD. However, little is known about the fairness and bias of these predictive models.

OBJECTIVE

The aims of this study are two-fold: (1) to develop a machine learning bias mitigation algorithm for sociodemographic features and (2) to develop a fairness-aware weighted majority voting (WMV) classifier for OUD prediction.

METHODS

We used the 2020 National Survey on Drug and Health data to develop a neural network (NN) model using stochastic gradient descent (SGD; NN-SGD) and an NN model using Adam (NN-Adam) optimizers and evaluated sociodemographic bias by comparing the area under the curve values. A bias mitigation algorithm, based on equality of odds, was implemented to minimize disparities in specificity and recall. Finally, a WMV classifier was developed for fairness-aware prediction of OUD. To further analyze bias detection and mitigation, we did a 1-N matching of OUD to non-OUD cases, controlling for socioeconomic variables, and evaluated the performance of the proposed bias mitigation algorithm and WMV classifier.

RESULTS

Our bias mitigation algorithm substantially reduced bias with NN-SGD, by 21.66% for sex, 1.48% for race, and 21.04% for income, and with NN-Adam by 16.96% for sex, 8.87% for marital status, 8.45% for working condition, and 41.62% for race. The fairness-aware WMV classifier achieved a recall of 85.37% and 92.68% and an accuracy of 58.85% and 90.21% using NN-SGD and NN-Adam, respectively. The results after matching also indicated remarkable bias reduction with NN-SGD and NN-Adam, respectively, as follows: sex (0.14% vs 0.97%), marital status (12.95% vs 10.33%), working condition (14.79% vs 15.33%), race (60.13% vs 41.71%), and income (0.35% vs 2.21%). Moreover, the fairness-aware WMV classifier achieved high performance with a recall of 100% and 85.37% and an accuracy of 73.20% and 89.38% using NN-SGD and NN-Adam, respectively.

CONCLUSIONS

The application of the proposed bias mitigation algorithm shows promise in reducing sociodemographic bias, with the WMV classifier confirming bias reduction and high performance in OUD prediction.

摘要

背景

阿片类药物使用障碍(OUD)是美国严重的公共卫生危机,2021年影响了超过550万美国人。机器学习已被用于预测患者发生阿片类药物使用障碍的风险。然而,对于这些预测模型的公平性和偏差知之甚少。

目的

本研究有两个目标:(1)开发一种针对社会人口学特征的机器学习偏差缓解算法;(2)开发一种用于阿片类药物使用障碍预测的公平感知加权多数投票(WMV)分类器。

方法

我们使用2020年全国药物和健康调查数据,使用随机梯度下降(SGD;NN-SGD)开发了一个神经网络(NN)模型,并使用Adam优化器(NN-Adam)开发了一个NN模型,通过比较曲线下面积值来评估社会人口学偏差。实施了一种基于机会均等的偏差缓解算法,以尽量减少特异性和召回率方面的差异。最后,开发了一个WMV分类器用于阿片类药物使用障碍的公平感知预测。为了进一步分析偏差检测和缓解情况,我们对阿片类药物使用障碍病例与非阿片类药物使用障碍病例进行了1对N匹配,控制社会经济变量,并评估了所提出的偏差缓解算法和WMV分类器的性能。

结果

我们的偏差缓解算法显著降低了NN-SGD的偏差,性别偏差降低了21.66%,种族偏差降低了1.48%,收入偏差降低了21.04%;对于NN-Adam,性别偏差降低了16.96%,婚姻状况偏差降低了8.87%,工作状况偏差降低了8.45%,种族偏差降低了41.62%。公平感知WMV分类器使用NN-SGD时召回率分别为85.37%和92.68%,准确率分别为58.85%和90.21%;使用NN-Adam时召回率分别为85.37%和92.68%,准确率分别为58.85%和90.21%。匹配后的结果还表明,NN-SGD和NN-Adam分别显著降低了偏差,具体如下:性别(0.14%对0.97%)、婚姻状况(12.95%对10.33%)、工作状况(14.79%对15.33%)、种族(60.13%对41.71%)和收入(0.35%对2.21%)。此外,公平感知WMV分类器使用NN-SGD时召回率为100%和85.37%,准确率为73.20%和89.38%;使用NN-Adam时召回率为100%和85.37%,准确率为73.20%和89.38%,表现出高性能。

结论

所提出的偏差缓解算法在减少社会人口学偏差方面显示出前景,WMV分类器证实了在阿片类药物使用障碍预测中偏差减少且性能良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/397f/11372321/950117675ea1/ai_v3i1e55820_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验