Suppr超能文献

用于生存终点分析的一类灵活的广义联合脆弱模型。

A flexible class of generalized joint frailty models for the analysis of survival endpoints.

作者信息

Chauvet Jocelyn, Rondeau Virginie

机构信息

INSERM U1219, Biostatistics Team, University of Bordeaux, Bordeaux, France.

ICES Research Center, La Roche-sur-Yon, France.

出版信息

Stat Med. 2023 Apr 15;42(8):1233-1262. doi: 10.1002/sim.9667. Epub 2023 Feb 12.

Abstract

This article focuses on shared frailty models for correlated failure times, as well as joint frailty models for the simultaneous analysis of recurrent events (eg, appearance of new cancerous lesions or hospital readmissions) and a major terminal event (typically, death). As extensions of the Cox model, these joint models usually assume a frailty proportional hazards model for each of the recurrent and terminal event processes. In order to extend these models beyond the proportional hazards assumption, our proposal is to replace these proportional hazards models with generalized survival models, for which the survival function is modeled as a linear predictor through a link function. Depending on the link function considered, these can be reduced to proportional hazards, proportional odds, additive hazards, or probit models. We first consider a fully parametric framework for the time and covariate effects. For proportional and additive hazards models, our approach also allows the use of smooth functions for baseline hazard functions and time-varying coefficients. The dependence between recurrent and terminal event processes is modeled by conditioning on a shared frailty acting differently on the two processes. Parameter estimates are provided using the maximum (penalized) likelihood method, implemented in the R package frailtypack (function GenfrailtyPenal). We perform simulation studies to assess the method, which is also illustrated on real datasets.

摘要

本文重点关注用于相关失效时间的共享脆弱性模型,以及用于同时分析复发事件(例如新癌性病变的出现或再次入院)和主要终点事件(通常为死亡)的联合脆弱性模型。作为Cox模型的扩展,这些联合模型通常对复发事件和终点事件过程中的每一个都假设一个脆弱性比例风险模型。为了将这些模型扩展到比例风险假设之外,我们的建议是用广义生存模型取代这些比例风险模型,其中生存函数通过一个连接函数被建模为线性预测器。根据所考虑的连接函数,这些模型可以简化为比例风险、比例优势、加法风险或概率单位模型。我们首先考虑时间和协变量效应的完全参数化框架。对于比例风险和加法风险模型,我们的方法还允许对基线风险函数和时变系数使用平滑函数。复发事件和终点事件过程之间的依赖关系通过对作用于这两个过程的共享脆弱性进行条件设定来建模。使用在R包frailtypack(函数GenfrailtyPenal)中实现的最大(惩罚)似然法提供参数估计。我们进行模拟研究以评估该方法,并在真实数据集上进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验