Liu Xing-Rong, Pawitan Yudi, Clements Mark S
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, S-171 77 Stockholm, Sweden.
Stat Med. 2017 Dec 20;36(29):4743-4762. doi: 10.1002/sim.7451. Epub 2017 Sep 14.
Our aim is to develop a rich and coherent framework for modeling correlated time-to-event data, including (1) survival regression models with different links and (2) flexible modeling for time-dependent and nonlinear effects with rich postestimation. We extend the class of generalized survival models, which expresses a transformed survival in terms of a linear predictor, by incorporating a shared frailty or random effects for correlated survival data. The proposed approach can include parametric or penalized smooth functions for time, time-dependent effects, nonlinear effects, and their interactions. The maximum (penalized) marginal likelihood method is used to estimate the regression coefficients and the variance for the frailty or random effects. The optimal smoothing parameters for the penalized marginal likelihood estimation can be automatically selected by a likelihood-based cross-validation criterion. For models with normal random effects, Gauss-Hermite quadrature can be used to obtain the cluster-level marginal likelihoods. The Akaike Information Criterion can be used to compare models and select the link function. We have implemented these methods in the R package rstpm2. Simulating for both small and larger clusters, we find that this approach performs well. Through 2 applications, we demonstrate (1) a comparison of proportional hazards and proportional odds models with random effects for clustered survival data and (2) the estimation of time-varying effects on the log-time scale, age-varying effects for a specific treatment, and two-dimensional splines for time and age.
我们的目标是开发一个丰富且连贯的框架,用于对相关事件发生时间数据进行建模,包括:(1)具有不同链接函数的生存回归模型,以及(2)通过丰富的估计后分析对时间依存和非线性效应进行灵活建模。我们通过纳入用于相关生存数据的共享脆弱性或随机效应,扩展了广义生存模型的类别,该模型通过线性预测器来表示变换后的生存情况。所提出的方法可以包括针对时间、时间依存效应、非线性效应及其相互作用的参数化或惩罚平滑函数。使用最大(惩罚)边际似然法来估计回归系数以及脆弱性或随机效应的方差。惩罚边际似然估计的最优平滑参数可以通过基于似然的交叉验证准则自动选择。对于具有正态随机效应的模型,可以使用高斯 - 埃尔米特求积法来获得聚类水平的边际似然。赤池信息准则可用于比较模型并选择链接函数。我们已在R包rstpm2中实现了这些方法。通过对小集群和大集群进行模拟,我们发现该方法表现良好。通过两个应用示例,我们展示了:(1)对聚类生存数据的具有随机效应的比例风险模型和比例优势模型进行比较,以及(2)在对数时间尺度上对时变效应、特定治疗的年龄效应以及时间和年龄的二维样条进行估计。