Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.
Chinese PLA Medical School, Beijing, China.
Int J Hyperthermia. 2023;40(1):2172219. doi: 10.1080/02656736.2023.2172219.
Current predictors are largely unsatisfied for early recurrence (ER) of hepatocellular carcinoma (HCC) after thermal ablation. We aimed to explore the prognostic value of peripheral immune factors (PIFs) for better ER prediction of HCC after thermal ablation.
Patients who received peripheral blood mononuclear cells (PBMCs) tests before thermal ablation were included. Clinical parameters and 18 PIFs were selected to construct Model, Model and the hybrid Model. Model performances were evaluated using area under the curve (AUC), and recurrence-free survival (RFS) were analyzed by Kaplan-Meier analysis and log-rank tests.
244 patients were included and were randomly divided in 3:1 ratio to discovery and validation cohorts. Clinical parameters including tumor size and AFP, and PIFs including neutrophils, platelets, CD3CD16CD56 NKT and CD8CD28 T lymphocytes were selected. The Model showed increase in predictive performance compared with Model, with the AUC improved from 0.664 (95%CI:0.588-0.740) to 0.801 (95%CI:0.734-0.867) in discovery cohort ( < 0.0001), and from 0.645 (95%CI:0.510-0.781) to 0.737(95%CI:0.608-0.865) in validation cohort ( =0.1006). Model enabled ER risk stratification of patients. Patients predicted in Model high-risk subgroup had a poor RFS compared with those predicted as Model low-risk subgroup, with the median RFS was 18.00 month versus 100.78 month in discovery cohort (<0.0001); and 24.00 month versus 60.35 month in validation cohort (=0.288). Patients in different risk subgroups exhibited distinct peripheral immune contexture.
Peripheral immune cells aiding clinical parameters boosted the prediction ability for ER of HCC after thermal ablation, which be helpful for pre-ablation ER risk stratification.
目前的预测因子在很大程度上不能满足肝癌(HCC)热消融后早期复发(ER)的预测需求。本研究旨在探索外周免疫因子(PIFs)在 HCC 热消融后 ER 预测中的预后价值。
纳入热消融前接受外周血单核细胞(PBMC)检测的患者。选择临床参数和 18 个 PIFs 构建模型、模型和混合模型。通过曲线下面积(AUC)评估模型性能,并通过 Kaplan-Meier 分析和对数秩检验分析无复发生存(RFS)。
共纳入 244 例患者,按 3:1 的比例随机分为发现队列和验证队列。选择临床参数(包括肿瘤大小和 AFP)和 PIFs(包括中性粒细胞、血小板、CD3CD16CD56 NKT 和 CD8CD28 T 淋巴细胞)。与模型相比,模型显示出预测性能的提高,发现队列中的 AUC 从 0.664(95%CI:0.588-0.740)提高到 0.801(95%CI:0.734-0.867)( < 0.0001),验证队列中的 AUC 从 0.645(95%CI:0.510-0.781)提高到 0.737(95%CI:0.608-0.865)(=0.1006)。模型能够对患者的 ER 风险进行分层。与模型低危亚组相比,模型高危亚组的患者 RFS 较差,发现队列中的中位 RFS 分别为 18.00 个月和 100.78 个月(<0.0001);验证队列中的中位 RFS 分别为 24.00 个月和 60.35 个月(=0.288)。不同风险亚组的患者表现出不同的外周免疫结构。
外周免疫细胞辅助临床参数提高了 HCC 热消融后 ER 的预测能力,有助于术前 ER 风险分层。