Suppr超能文献

用于预测热消融术后肝细胞癌复发的磁共振成像放射组学、深度学习和临床指标的多中心整合

Multicenter Integration of MR Radiomics, Deep Learning, and Clinical Indicators for Predicting Hepatocellular Carcinoma Recurrence After Thermal Ablation.

作者信息

Wang Yandan, Zhang Yong, Xiao Jincheng, Geng Xiang, Han Lujun, Luo Junpeng

机构信息

Department of Otorhinolaryngology, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China.

Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, People's Republic of China.

出版信息

J Hepatocell Carcinoma. 2024 Oct 2;11:1861-1874. doi: 10.2147/JHC.S482760. eCollection 2024.

Abstract

BACKGROUND

To develop and validate an innovative predictive model that integrates multisequence magnetic resonance (MR) radiomics, deep learning features, and clinical indicators to accurately predict the recurrence of hepatocellular carcinoma (HCC) after thermal ablation.

METHODS

This retrospective multicenter cohort study enrolled patients who were diagnosed with HCC and treated via thermal ablation. We extracted radiomic features from multisequence 3T MR images, analyzed these images using a 3D convolutional neural network (3D CNN), and incorporated clinical data into the model. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.

RESULTS

The study included 535 patients from three hospitals, comprising 462 males and 43 females. The RDC model, which stands for the Radiomics-Deep Learning-Clinical data model, demonstrated high predictive accuracy, achieving AUCs of 0.794 in the training set, 0.777 in the validation set, and 0.787 in the test set. Statistical analysis confirmed the model's robustness and the significant contribution of the integrated features to its predictive capabilities.

CONCLUSION

The RDC model effectively predicts HCC recurrence after thermal ablation by synergistically combining advanced imaging analysis and clinical parameters. This study highlights the potential of such integrative approaches to enhance prognostic assessments in HCC patients and offers a promising tool for clinical decision-making.

摘要

背景

开发并验证一种创新的预测模型,该模型整合多序列磁共振(MR)影像组学、深度学习特征和临床指标,以准确预测热消融术后肝细胞癌(HCC)的复发情况。

方法

这项回顾性多中心队列研究纳入了被诊断为HCC并接受热消融治疗的患者。我们从多序列3T MR图像中提取影像组学特征,使用三维卷积神经网络(3D CNN)分析这些图像,并将临床数据纳入模型。使用受试者操作特征(ROC)曲线的曲线下面积(AUC)评估模型性能。

结果

该研究纳入了来自三家医院的535例患者,其中男性462例,女性43例。代表影像组学-深度学习-临床数据模型的RDC模型显示出较高的预测准确性,在训练集中的AUC为0.794,在验证集中为0.777,在测试集中为0.787。统计分析证实了该模型的稳健性以及综合特征对其预测能力的显著贡献。

结论

RDC模型通过协同结合先进的影像分析和临床参数,有效地预测了热消融术后HCC的复发。本研究突出了这种综合方法在增强HCC患者预后评估方面的潜力,并为临床决策提供了一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/187e/11456269/c8da6b916cda/JHC-11-1861-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验