Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Apr;8(4):361-386. doi: 10.1016/j.bpsc.2022.11.005. Epub 2022 Nov 26.
Major depressive disorder is a highly prevalent psychiatric disorder. Despite an extensive range of treatment options, about a third of patients still struggle to respond to available therapies. In the last 20 years, ketamine has gained considerable attention in the psychiatric field as a promising treatment of depression, particularly in patients who are treatment resistant or at high risk for suicide. At a subanesthetic dose, ketamine produces a rapid and pronounced reduction in depressive symptoms and suicidal ideation, and serial treatment appears to produce a greater and more sustained therapeutic response. However, the mechanism driving ketamine's antidepressant effects is not yet well understood. Biomarker discovery may advance knowledge of ketamine's antidepressant action, which could in turn translate to more personalized and effective treatment strategies. At the brain systems level, neuroimaging can be used to identify functional pathways and networks contributing to ketamine's therapeutic effects by studying how it alters brain structure, function, connectivity, and metabolism. In this review, we summarize and appraise recent work in this area, including 51 articles that use resting-state and task-based functional magnetic resonance imaging, arterial spin labeling, positron emission tomography, structural magnetic resonance imaging, diffusion magnetic resonance imaging, or magnetic resonance spectroscopy to study brain and clinical changes 24 hours or longer after ketamine treatment in populations with unipolar or bipolar depression. Though individual studies have included relatively small samples, used different methodological approaches, and reported disparate regional findings, converging evidence supports that ketamine leads to neuroplasticity in structural and functional brain networks that contribute to or are relevant to its antidepressant effects.
重度抑郁症是一种高发的精神疾病。尽管有广泛的治疗选择,但仍有约三分之一的患者对现有疗法反应不佳。在过去的 20 年中,氯胺酮在精神科领域引起了相当大的关注,作为治疗抑郁症的一种有前途的方法,特别是对那些治疗抵抗或有自杀高风险的患者。在亚麻醉剂量下,氯胺酮可迅速显著减轻抑郁症状和自杀意念,连续治疗似乎会产生更大、更持久的治疗反应。然而,氯胺酮抗抑郁作用的机制尚未得到很好的理解。生物标志物的发现可能会促进对氯胺酮抗抑郁作用的认识,这反过来又可能转化为更个性化和有效的治疗策略。在大脑系统水平上,神经影像学可以通过研究氯胺酮如何改变大脑结构、功能、连接和代谢来识别参与其治疗效果的功能途径和网络,从而用于识别功能途径和网络。在这篇综述中,我们总结和评价了该领域的最新工作,包括 51 篇文章,这些文章使用静息态和任务态功能磁共振成像、动脉自旋标记、正电子发射断层扫描、结构磁共振成像、弥散磁共振成像或磁共振波谱来研究单相或双相抑郁症患者在接受氯胺酮治疗 24 小时或更长时间后大脑和临床变化。尽管个别研究的样本相对较小,使用了不同的方法学方法,并报告了不同的区域发现,但一致的证据支持氯胺酮导致结构和功能大脑网络的神经可塑性,这些网络有助于或与氯胺酮的抗抑郁作用相关。