Suppr超能文献

一种用于诊断川崎病的人工智能衍生血液检测方法。

An Artificial Intelligence Derived Blood Test to Diagnose Kawasaki Disease.

作者信息

Portman Michael A, Magaret Craig A, Barnes Grady, Peters Celine, Rao Aparna, Rhyne Rhonda

机构信息

Seattle Children's Research Institute, and Department of Pediatrics, University of Washington, Seattle, Washington.

Prevencio Inc., Kirkland, Washington.

出版信息

Hosp Pediatr. 2023 Mar 1;13(3):201-210. doi: 10.1542/hpeds.2022-006868.

Abstract

OBJECTIVE

To develop a highly sensitive and specific blood biomarker panel that identifies febrile children with Kawasaki disease (KD).

METHODS

We tested blood samples from a single-center cohort of KD (n = 50) and control febrile children (n = 100) to develop a biomarker panel from 11 candidates selected by their assay clinical availability. We used machine learning with least absolute shrinkage and selection operator regression to identify 11 blood markers with values incorporated into a model, which provided a binary predictive risk score for KD determined with Youden's index. We further reduced the model using least angle regression.

RESULTS

Using 10-fold cross-validation with least absolute shrinkage and selection operator regression on these 11 readouts plus patient age resulted in an area under the receiver operating characteristic curve of 0.94 (95% confidence interval [CI]: 0.90-0.98; P <.01). Using Youden's index, which provided an optimal cut off for a binary predictive risk score, 88 of 97 KD-negative patients were diagnosed negative, and 47 of 50 KD-positive patients were positive, yielding a sensitivity of 0.94 (95% CI: 0.87-1.0) and specificity of 0.91 (95% CI: 0.85-0.96). Least angle regression reduced the final panel to 3 biomarkers: C-reactive protein, NT-proB-type natriuretic peptide, and thyroid hormone uptake. The predictive model then provided an area under the receiver operating characteristic curve of 0.92 (95% CI: 0.87-0.96; P <.001) along with sensitivity and specificity at 86% each.

CONCLUSIONS

Machine learning identified a highly accurate diagnostic model for KD. The reduced model employs 3 biomarkers currently approved by regulatory bodies and performed on platforms commonly used by certified diagnostic laboratories.

摘要

目的

开发一种高度敏感且特异的血液生物标志物组合,用于识别患有川崎病(KD)的发热儿童。

方法

我们检测了来自单中心队列的KD患儿(n = 50)和对照发热儿童(n = 100)的血样,从根据检测临床可用性选出的11种候选物中开发生物标志物组合。我们使用带有最小绝对收缩和选择算子回归的机器学习来识别11种血液标志物,其值被纳入一个模型,该模型通过约登指数提供KD的二元预测风险评分。我们使用最小角回归进一步简化该模型。

结果

对这11项指标加上患者年龄进行10倍交叉验证,并结合最小绝对收缩和选择算子回归,得到受试者工作特征曲线下面积为0.94(95%置信区间[CI]:0.90 - 0.98;P <.01)。使用约登指数确定二元预测风险评分的最佳截断值,97例KD阴性患者中有88例被诊断为阴性,50例KD阳性患者中有47例为阳性,敏感性为0.94(95% CI:0.87 - 1.0),特异性为0.91(95% CI:0.85 - 0.96)。最小角回归将最终的组合简化为3种生物标志物:C反应蛋白、N末端B型利钠肽原和甲状腺激素摄取。然后预测模型的受试者工作特征曲线下面积为0.92(95% CI:0.87 - 0.96;P <.001),敏感性和特异性均为86%。

结论

机器学习确定了一种用于KD的高度准确的诊断模型。简化后的模型采用了目前已获监管机构批准的3种生物标志物,并可在经认证的诊断实验室常用的平台上进行检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验