Suppr超能文献

一种用于鉴别川崎病与发热儿童的新型血液检测评分系统。

A novel score system of blood tests for differentiating Kawasaki disease from febrile children.

机构信息

Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.

Department of Statistics, National Cheng Kung University, Tainan, Taiwan.

出版信息

PLoS One. 2021 Jan 22;16(1):e0244721. doi: 10.1371/journal.pone.0244721. eCollection 2021.

Abstract

BACKGROUND

Kawasaki disease is the most common cause of acquired heart disease among febrile children under the age of 5 years old. It is also a clinically diagnosed disease. In this study, we developed and assessed a novel score system using objective parameters to differentiate Kawasaki disease from febrile children.

METHODS

We analyzed 6,310 febrile children and 485 Kawasaki disease subjects in this study. We collected biological parameters of a routine blood test, including complete blood count with differential, C-reactive protein, aspartate aminotransferase, and alanine aminotransferase. Receiver operating characteristic curve, logistic regression, and Youden's index were all used to develop the prediction model. Two other independent cohorts from different hospitals were used for verification.

RESULTS

We obtained eight independent predictors (platelets, eosinophil, alanine aminotransferase, C-reactive protein, hemoglobin, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and monocyte) and found the top three scores to be eosinophil >1.5% (score: 7), alanine aminotransferase >30 U/L (score: 6), and C-reactive protein>25 mg/L (score: 6). A score of 14 represents the best sensitivity value plus specificity prediction rate for Kawasaki disease. The sensitivity, specificity, and accuracy for our cohort were 0.824, 0.839, and 0.838, respectively. The verification test of two independent cohorts of Kawasaki disease patients (N = 103 and 170) from two different institutes had a sensitivity of 0.780 (213/273).

CONCLUSION

Our findings demonstrate a novel score system with good discriminatory ability for differentiating between children with Kawasaki disease and other febrile children, as well as highlight the importance of eosinophil in Kawasaki disease. Using this novel score system can help first-line physicians diagnose and then treat Kawasaki disease early.

摘要

背景

川崎病是 5 岁以下发热儿童获得性心脏病的最常见原因,也是一种临床诊断疾病。本研究旨在建立并评估一种使用客观参数区分川崎病与发热儿童的新型评分系统。

方法

本研究共纳入 6310 例发热儿童和 485 例川崎病患儿,收集包括血常规(白细胞分类计数、C 反应蛋白、天门冬氨酸氨基转移酶、丙氨酸氨基转移酶)在内的常规血液学参数。采用受试者工作特征曲线、logistic 回归和约登指数来建立预测模型,并在另外两个来自不同医院的独立队列中进行验证。

结果

我们得到了 8 个独立的预测因子(血小板、嗜酸性粒细胞、丙氨酸氨基转移酶、C 反应蛋白、血红蛋白、平均红细胞血红蛋白量、平均红细胞血红蛋白浓度、单核细胞),并发现前 3 个最高得分是嗜酸性粒细胞>1.5%(得分为 7)、丙氨酸氨基转移酶>30 U/L(得分为 6)和 C 反应蛋白>25 mg/L(得分为 6)。评分 14 代表了对川崎病最佳的灵敏度值加特异性预测率。本研究队列的灵敏度、特异性和准确性分别为 0.824、0.839 和 0.838。两个不同研究所的 2 个独立川崎病患儿队列(N=103 和 170)的验证试验的灵敏度为 0.780(213/273)。

结论

本研究建立的新型评分系统对区分川崎病与其他发热儿童具有良好的鉴别能力,并强调了嗜酸性粒细胞在川崎病中的重要性。使用该新型评分系统可以帮助一线医生早期诊断和治疗川崎病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/102d/7822339/19cd2cbc1c51/pone.0244721.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验