Suppr超能文献

与囊性纤维化患者早期肺功能快速下降相关的建筑环境因素。

Built environment factors predictive of early rapid lung function decline in cystic fibrosis.

机构信息

Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.

Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA.

出版信息

Pediatr Pulmonol. 2023 May;58(5):1501-1513. doi: 10.1002/ppul.26352. Epub 2023 Feb 21.

Abstract

BACKGROUND

The extent to which environmental exposures and community characteristics of the built environment collectively predict rapid lung function decline, during adolescence and early adulthood in cystic fibrosis (CF), has not been examined.

OBJECTIVE

To identify built environment characteristics predictive of rapid CF lung function decline.

METHODS

We performed a retrospective, single-center, longitudinal cohort study (n = 173 individuals with CF aged 6-20 years, 2012-2017). We used a stochastic model to predict lung function, measured as forced expiratory volume in 1 s (FEV ) of % predicted. Traditional demographic/clinical characteristics were evaluated as predictors. Built environmental predictors included exposure to elemental carbon attributable to traffic sources (ECAT), neighborhood material deprivation (poverty, education, housing, and healthcare access), greenspace near the home, and residential drivetime to the CF center.

MEASUREMENTS AND MAIN RESULTS

The final model, which included ECAT, material deprivation index, and greenspace, alongside traditional demographic/clinical predictors, significantly improved fit and prediction, compared with only demographic/clinical predictors (Likelihood Ratio Test statistic: 26.78, p < 0.0001; the difference in Akaike Information Criterion: 15). An increase of 0.1 μg/m of ECAT was associated with 0.104% predicted/yr (95% confidence interval: 0.024, 0.183) more rapid decline. Although not statistically significant, material deprivation was similarly associated (0.1-unit increase corresponded to additional decline of 0.103% predicted/year [-0.113, 0.319]). High-risk regional areas of rapid decline and age-related heterogeneity were identified from prediction mapping.

CONCLUSION

Traffic-related air pollution exposure is an important predictor of rapid pulmonary decline that, coupled with community-level material deprivation and routinely collected demographic/clinical characteristics, enhance CF prognostication and enable personalized environmental health interventions.

摘要

背景

在囊性纤维化(CF)中,环境暴露和建筑环境的社区特征对青少年和成年早期快速肺功能下降的综合影响尚未得到研究。

目的

确定与 CF 快速肺功能下降相关的建筑环境特征。

方法

我们进行了一项回顾性、单中心、纵向队列研究(n=173 名年龄在 6-20 岁的 CF 患者,2012-2017 年)。我们使用随机模型预测肺功能,以预测的 1 秒用力呼气量(FEV )的百分比表示。评估了传统的人口统计学/临床特征作为预测因素。建筑环境预测因素包括归因于交通源的元素碳暴露(ECAT)、邻里物质剥夺(贫困、教育、住房和医疗保健机会)、家庭附近的绿地以及到 CF 中心的居住行车时间。

测量和主要结果

最终模型包括 ECAT、物质剥夺指数和绿地,以及传统的人口统计学/临床预测因素,与仅包括人口统计学/临床预测因素的模型相比,显著提高了拟合度和预测能力(似然比检验统计量:26.78,p<0.0001;Akaike 信息准则差异:15)。ECAT 增加 0.1μg/m,与预测的年下降率增加 0.104%(95%置信区间:0.024,0.183)相关。尽管没有统计学意义,但物质剥夺也有类似的相关性(增加 0.1 个单位对应于预测年下降率增加 0.103%[-0.113,0.319])。通过预测映射,确定了快速下降的高风险区域和与年龄相关的异质性。

结论

交通相关空气污染暴露是快速肺功能下降的重要预测因素,与社区层面的物质剥夺和常规收集的人口统计学/临床特征相结合,可增强 CF 的预后预测,并为环境健康干预提供个性化方案。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验