Suppr超能文献

需求不确定下城乡物流网络一体化设计的分层枢纽选址模型

A hierarchical hub location model for the integrated design of urban and rural logistics networks under demand uncertainty.

作者信息

Li Zhi-Chun, Bing Xue, Fu Xiaowen

机构信息

School of Management, Huazhong University of Science and Technology, Wuhan, 430074 China.

Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Ann Oper Res. 2023 Feb 7:1-22. doi: 10.1007/s10479-023-05189-6.

Abstract

This paper contributes to the integrated design issue of urban and rural logistics networks under demand uncertainty. A hierarchical hub location model is proposed, which minimizes the expected total system cost by optimizing the locations, number and capacities of "urban-town‒village" hierarchical logistics hubs. The interactions among the logistics hubs and among the hub‒and‒spoke connections, as well as the hub capacity constraints are explicitly considered in the presence of logistics demand uncertainty. A demand scenario‒based branch‒and‒Benders‒cut algorithm is developed to solve the proposed model. A case study of Jiangling urban‒rural region in Hubei province of China is conducted for the illustration of the model and solution algorithm. The results generated by the proposed algorithm are benchmarked against those obtained by GUROBI solver and the practical scheme being currently implemented in the region. The results showed that the proposed methodology can greatly improve the efficiency of the urban‒rural logistics system in terms of expected total system cost. It is important to explicitly model the demand uncertainty, otherwise a significant decision bias may emerge. The proposed algorithm outperforms the GUROBI solver in terms of problem size solved and computational time.

摘要

本文针对需求不确定情况下的城乡物流网络一体化设计问题展开研究。提出了一种分层枢纽选址模型,该模型通过优化“城市—城镇—乡村”分层物流枢纽的位置、数量和容量,使系统总期望成本最小化。在物流需求不确定的情况下,明确考虑了物流枢纽之间、轴辐式连接之间的相互作用以及枢纽容量约束。开发了一种基于需求场景的分支定界—本德尔斯割平面算法来求解所提出的模型。以中国湖北省江陵城乡地区为例,对所提出的模型和求解算法进行了说明。将所提算法生成的结果与使用GUROBI求解器得到的结果以及该地区目前实施的实际方案进行了对比。结果表明,所提方法在系统总期望成本方面能够极大地提高城乡物流系统的效率。明确对需求不确定性进行建模非常重要,否则可能会出现重大的决策偏差。在所求解的问题规模和计算时间方面,所提算法优于GUROBI求解器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f4/9903266/9a0ee6d70884/10479_2023_5189_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验