Suppr超能文献

基于需求不确定性的阿德氏金鸻优化低碳物流网络算法。

Aptenodytes forsteri optimization algorithm for low-carbon logistics network under demand uncertainty.

机构信息

College of Transport and Communications, Shanghai Maritime University, Shanghai, China.

出版信息

PLoS One. 2024 Jan 29;19(1):e0297223. doi: 10.1371/journal.pone.0297223. eCollection 2024.

Abstract

As China's "double carbon" goal continues to advance, logistics as a key area of carbon emissions and low-carbon logistics center site selection are key links in the process. However, existing studies on logistics center location often ignore the impact of demand uncertainty, which leads to a waste of resources in the planning and construction processes. We take logistics cost and carbon emission as the objectives, and the multi-objective site selection model established based on stochastic programming theory takes demand uncertainty as a stochastic constraint. We transform the stochastic constraint model into a 0-1 mixed integer multi-objective planning model by utilizing the idea of equivalence transformation. The Aptenodytes Forsteri Optimization (AFO) algorithm is combined with the Ideal Point Method to solve the model, and the algorithm is compared with the Particle Swarm Optimization (PSO), Differential Evolutionary (DE), Tabu Search (TS), Sparrow Search (SS) algorithms, and the exact solver Linear Interactive and General Optimizer (LINGO). The examples verify the validity of the models and algorithms, with an average reduction of 6.2% and 3.6% in logistics costs and carbon emissions in the case of demand determination, and at the confidence level of 0.9 under demand uncertainty, both logistics costs and carbon emissions are decreased to varying degrees. This study provides a new research idea for the low-carbon logistics location problem under demand uncertainty, which helps to promote the transformation of the logistics industry to low-carbon and high-efficiency.

摘要

随着中国“双碳”目标的持续推进,物流作为碳排放的重点领域和低碳物流中心选址是实现“双碳”目标的关键环节。然而,现有的物流中心选址研究往往忽略了需求不确定性的影响,导致规划和建设过程中的资源浪费。本研究以物流成本和碳排放为目标,基于随机规划理论建立的多目标选址模型将需求不确定性作为随机约束。通过等效变换思想将随机约束模型转化为 0-1 混合整数多目标规划模型。采用 Aptenodytes Forsteri 优化(AFO)算法与理想点法相结合求解模型,并将算法与粒子群优化(PSO)、差分进化(DE)、禁忌搜索(TS)、麻雀搜索(SS)算法和精确求解器 Linear Interactive and General Optimizer(LINGO)进行比较。实例验证了模型和算法的有效性,在需求确定的情况下,物流成本和碳排放平均降低了 6.2%和 3.6%,在需求不确定的情况下置信水平为 0.9 时,物流成本和碳排放都有不同程度的降低。本研究为需求不确定性下的低碳物流选址问题提供了新的研究思路,有助于推动物流行业向低碳高效转型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e002/10824431/074eeb90982e/pone.0297223.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验