School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Microb Cell Fact. 2018 Nov 19;17(1):180. doi: 10.1186/s12934-018-1029-1.
The glutamate decarboxylase (GAD) system of Lactobacillus brevis involves two isoforms of GAD, GadA and GadB, which catalyze the conversion of L-glutamate to γ-aminobutyric acid (GABA) in a proton-consuming reaction contributing to intracellular pH homeostasis. However, direct experimental evidence for detailed contributions of gad genes to acid tolerance and GABA production is lacking.
Molecular analysis revealed that gadB is cotranscribed in tandem with upstream gadC, and that expression of gadCB is greatly upregulated in response to low ambient pH when cells enter the late exponential growth phase. In contrast, gadA is located away from the other gad genes, and its expression was consistently lower and not induced by mild acid treatment. Analysis of deletion mutations in the gad genes of L. brevis demonstrated a decrease in the level of GAD activity and a concomitant decrease in acid resistance in the order of wild-type> ΔgadA> ΔgadB> ΔgadC> ΔgadAB, indicating that the GAD activity mainly endowed by GadB rather than GadA is an indispensable step in the GadCB mediated acid resistance of this organism. Moreover, engineered strains with higher GAD activities were constructed by overexpressing key GAD system genes. With the proposed two-stage pH and temperature control fed-batch fermentation strategy, GABA production by the engineered strain L. brevis 9530: pNZ8148-gadBC continuously increased reaching a high level of 104.38 ± 3.47 g/L at 72 h.
This is the first report of the detailed contribution of gad genes to acid tolerance and GABA production in L. brevis. Enhanced production of GABA by engineered L. brevis was achieved, and the resulting GABA level was one of the highest among lactic acid bacterial species grown in batch or fed-batch culture.
短乳杆菌的谷氨酸脱羧酶(GAD)系统涉及两种 GAD 同工酶,GadA 和 GadB,它们在质子消耗反应中催化 L-谷氨酸转化为 γ-氨基丁酸(GABA),有助于细胞内 pH 稳态。然而,缺乏直接的实验证据表明 gad 基因对酸耐受和 GABA 生产的详细贡献。
分子分析表明,gadB 与上游 gadC 串联转录,当细胞进入指数生长后期时,gadCB 的表达在低环境 pH 下被极大地上调。相比之下,gadA 远离其他 gad 基因,其表达水平始终较低,并且不受轻度酸处理的诱导。对短乳杆菌 gad 基因缺失突变的分析表明,GAD 活性水平降低,酸抗性降低的顺序为野生型>ΔgadA>ΔgadB>ΔgadC>ΔgadAB,表明主要由 GadB 而不是 GadA 赋予的 GAD 活性是该生物体中 GadCB 介导的酸抗性的不可或缺步骤。此外,通过过表达关键 GAD 系统基因构建了具有更高 GAD 活性的工程菌株。通过提出的两阶段 pH 和温度控制分批补料发酵策略,工程菌株 L. brevis 9530: pNZ8148-gadBC 的 GABA 产量连续增加,在 72 小时达到 104.38±3.47 g/L 的高水平。
这是首次报道 gad 基因对短乳杆菌酸耐受和 GABA 生产的详细贡献。通过工程短乳杆菌实现了 GABA 的增强生产,所得 GABA 水平在分批或补料培养的乳酸细菌属中是最高的之一。