Suppr超能文献

使用标记磁共振成像测量扩散加权数据中的应变

Measuring Strain in Diffusion-Weighted Data Using Tagged Magnetic Resonance Imaging.

作者信息

Xing Fangxu, Liu Xiaofeng, Reese Timothy G, Stone Maureen, Wedeen Van J, Prince Jerry L, El Fakhri Georges, Woo Jonghye

机构信息

Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, US 02114.

Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, US 21201.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610989. Epub 2022 Apr 4.

Abstract

Accurate strain measurement in a deforming organ has been essential in motion analysis using medical images. In recent years, internal tissue's in vivo motion and strain computation has been mostly achieved through dynamic magnetic resonance (MR) imaging. However, such data lack information on tissue's intrinsic fiber directions, preventing computed strain tensors from being projected onto a direction of interest. Although diffusion-weighted MR imaging excels at providing fiber tractography, it yields static images unmatched with dynamic MR data. This work reports an algorithm workflow that estimates strain values in the diffusion MR space by matching corresponding tagged dynamic MR images. We focus on processing a dataset of various human tongue deformations in speech. The geometry of tongue muscle fibers is provided by diffusion tractography, while spatiotemporal motion fields are provided by tagged MR analysis. The tongue's deforming shapes are determined by segmenting a synthetic cine dynamic MR sequence generated from tagged data using a deep neural network. Estimated motion fields are transformed into the diffusion MR space using diffeomorphic registration, eventually leading to strain values computed in the direction of muscle fibers. The method was tested on 78 time volumes acquired during three sets of specific tongue deformations including both speech and protrusion motion. Strain in the line of action of seven internal tongue muscles was extracted and compared both intra- and inter-subject. Resulting compression and stretching patterns of individual muscles revealed the unique behavior of individual muscles and their potential activation pattern.

摘要

在使用医学图像进行运动分析时,准确测量变形器官中的应变至关重要。近年来,体内组织的运动和应变计算主要通过动态磁共振(MR)成像来实现。然而,此类数据缺乏关于组织固有纤维方向的信息,使得计算出的应变张量无法投影到感兴趣的方向上。尽管扩散加权MR成像在提供纤维束成像方面表现出色,但它产生的是与动态MR数据不匹配的静态图像。这项工作报告了一种算法工作流程,通过匹配相应的标记动态MR图像来估计扩散MR空间中的应变值。我们专注于处理语音中各种人类舌头变形的数据集。舌头肌肉纤维的几何形状由扩散束成像提供,而时空运动场由标记MR分析提供。舌头的变形形状通过使用深度神经网络分割从标记数据生成的合成电影动态MR序列来确定。使用微分同胚配准将估计的运动场转换到扩散MR空间,最终得到在肌肉纤维方向上计算出的应变值。该方法在三组特定舌头变形(包括语音和突出运动)期间获取的78个时间体积上进行了测试。提取了七条舌内肌肉作用线上的应变,并在受试者内和受试者间进行了比较。单个肌肉产生的压缩和拉伸模式揭示了单个肌肉的独特行为及其潜在的激活模式。

相似文献

1
Measuring Strain in Diffusion-Weighted Data Using Tagged Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610989. Epub 2022 Apr 4.
2
Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10574. doi: 10.1117/12.2293028. Epub 2018 Mar 2.
3
Analysis of Tongue Muscle Strain During Speech From Multimodal Magnetic Resonance Imaging.
J Speech Lang Hear Res. 2023 Feb 13;66(2):513-526. doi: 10.1044/2022_JSLHR-22-00329. Epub 2023 Jan 30.
5
A Four-dimensional Motion Field Atlas of the Tongue from Tagged and Cine Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2017;10133. doi: 10.1117/12.2254363. Epub 2017 Feb 24.
6
Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing.
J Acoust Soc Am. 2007 Jan;121(1):491-504. doi: 10.1121/1.2363926.
9
Floor-of-the-Mouth Muscle Function Analysis Using Dynamic Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2581484. Epub 2021 Feb 15.
10
Tissue-point motion tracking in the tongue from cine MRI and tagged MRI.
J Speech Lang Hear Res. 2014 Apr 1;57(2):S626-36. doi: 10.1044/2014_JSLHR-S-12-0208.

引用本文的文献

1
A registration strategy to characterize DTI-observed changes in skeletal muscle architecture due to passive shortening.
PLoS One. 2025 Mar 10;20(3):e0302675. doi: 10.1371/journal.pone.0302675. eCollection 2025.
3
Structure-aware Unsupervised Tagged-to-Cine MRI Synthesis with Self Disentanglement.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610655. Epub 2022 Apr 4.

本文引用的文献

1
DUAL-CYCLE CONSTRAINED BIJECTIVE VAE-GAN FOR TAGGED-TO-CINE MAGNETIC RESONANCE IMAGE SYNTHESIS.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433852. Epub 2021 May 25.
2
In vivo estimates of axonal stretch and 3D brain deformation during mild head impact.
Brain Multiphys. 2020 Nov;1. doi: 10.1016/j.brain.2020.100015. Epub 2020 Sep 3.
3
Analysis of fiber strain in the human tongue during speech.
Comput Methods Biomech Biomed Engin. 2020 Jun;23(8):312-322. doi: 10.1080/10255842.2020.1722808. Epub 2020 Feb 7.
5
Phase Vector Incompressible Registration Algorithm for Motion Estimation From Tagged Magnetic Resonance Images.
IEEE Trans Med Imaging. 2017 Oct;36(10):2116-2128. doi: 10.1109/TMI.2017.2723021. Epub 2017 Jul 4.
6
Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images.
J Speech Lang Hear Res. 2016 Jun 1;59(3):468-79. doi: 10.1044/2016_JSLHR-S-14-0155.
8
Reconstruction of high-resolution tongue volumes from MRI.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24. doi: 10.1109/TBME.2012.2218246. Epub 2012 Sep 27.
9
Cardiac motion and deformation recovery from MRI: a review.
IEEE Trans Med Imaging. 2012 Feb;31(2):487-503. doi: 10.1109/TMI.2011.2171706. Epub 2011 Oct 13.
10
Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.
IEEE Trans Med Imaging. 2011 Feb;30(2):251-65. doi: 10.1109/TMI.2010.2076299. Epub 2010 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验