Suppr超能文献

使用标记和高分辨率磁共振成像将言语产生与舌肌压缩相关联。

Relating Speech Production to Tongue Muscle Compressions Using Tagged and High-resolution Magnetic Resonance Imaging.

作者信息

Xing Fangxu, Ye Chuyang, Woo Jonghye, Stone Maureen, Prince Jerry L

机构信息

Dept. Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, US 21218.

Ctr. Advanced Medical Imaging Science, Massachusetts General Hospital, Boston, MA, US 02114.

出版信息

Proc SPIE Int Soc Opt Eng. 2015 Feb 21;9413. doi: 10.1117/12.2081652.

Abstract

The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use four-dimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two post-glossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

摘要

人类舌头由多个内部肌肉组成,这些肌肉在言语产生过程中协同工作。肌肉力学评估有助于理解舌头运动的产生、解释临床观察结果以及预测手术效果。尽管已经提出了各种计算舌头运动的方法,但在相互交错的纤维框架中将运动与肌肉活动相关联的研究尚未开展。在这项工作中,我们旨在开发一种方法,以揭示言语过程中不同时间阶段不同舌肌的活动情况。我们分别使用四维标记磁共振(MR)图像和静态高分辨率MR图像来获取舌头运动和肌肉解剖结构。然后,我们计算应变张量和沿肌肉纤维方向的局部组织压缩,以揭示它们的缩短模式。这个过程依赖于多种图像分析方法的支持,包括从MR图像切片进行超分辨率体积重建、内部肌肉分割、使用标记图像跟踪组织点的不可压缩运动、肌肉纤维方向随时间的传播以及作用线上应变的计算等。我们在一项受控言语任务中对一名对照受试者和两名舌切除术后患者进行了该方法的评估。正常受试者的舌肌活动在不同时刻与言语产生高度对应,而两名患者由于舌头被切除,其肌肉活动与对照呈现出不同模式。该方法显示出将整体舌头运动与特定肌肉活动相关联的潜力,这可能为未来的临床和科学研究提供新的信息。

相似文献

2
Measuring Strain in Diffusion-Weighted Data Using Tagged Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610989. Epub 2022 Apr 4.
3
Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images.
J Speech Lang Hear Res. 2016 Jun 1;59(3):468-79. doi: 10.1044/2016_JSLHR-S-14-0155.
4
Analysis of Tongue Muscle Strain During Speech From Multimodal Magnetic Resonance Imaging.
J Speech Lang Hear Res. 2023 Feb 13;66(2):513-526. doi: 10.1044/2022_JSLHR-22-00329. Epub 2023 Jan 30.
5
A Four-dimensional Motion Field Atlas of the Tongue from Tagged and Cine Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2017;10133. doi: 10.1117/12.2254363. Epub 2017 Feb 24.
6
Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10574. doi: 10.1117/12.2293028. Epub 2018 Mar 2.
7
Atlas-Based Tongue Muscle Correlation Analysis From Tagged and High-Resolution Magnetic Resonance Imaging.
J Speech Lang Hear Res. 2019 Jul 15;62(7):2258-2269. doi: 10.1044/2019_JSLHR-S-18-0495. Epub 2019 Jul 2.
8
Floor-of-the-Mouth Muscle Function Analysis Using Dynamic Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2581484. Epub 2021 Feb 15.
9
MRI ANALYSIS OF 3D NORMAL AND POST-GLOSSECTOMY TONGUE MOTION IN SPEECH.
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:816-819. doi: 10.1109/ISBI.2013.6556600.
10
Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing.
J Acoust Soc Am. 2007 Jan;121(1):491-504. doi: 10.1121/1.2363926.

引用本文的文献

1
Detection of Subclinical Motor Speech Deficits after Presumed Low-Grade Glioma Surgery.
Brain Sci. 2023 Nov 24;13(12):1631. doi: 10.3390/brainsci13121631.
2
Measuring Strain in Diffusion-Weighted Data Using Tagged Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610989. Epub 2022 Apr 4.
3
Analysis of fiber strain in the human tongue during speech.
Comput Methods Biomech Biomed Engin. 2020 Jun;23(8):312-322. doi: 10.1080/10255842.2020.1722808. Epub 2020 Feb 7.
4
Speech Map: A Statistical Multimodal Atlas of 4D Tongue Motion During Speech from Tagged and Cine MR Images.
Comput Methods Biomech Biomed Eng Imaging Vis. 2019;7(4):361-373. doi: 10.1080/21681163.2017.1382393. Epub 2017 Oct 9.
5
Atlas-Based Tongue Muscle Correlation Analysis From Tagged and High-Resolution Magnetic Resonance Imaging.
J Speech Lang Hear Res. 2019 Jul 15;62(7):2258-2269. doi: 10.1044/2019_JSLHR-S-18-0495. Epub 2019 Jul 2.
6
3-D Measurements of Acceleration-Induced Brain Deformation via Harmonic Phase Analysis and Finite-Element Models.
IEEE Trans Biomed Eng. 2019 May;66(5):1456-1467. doi: 10.1109/TBME.2018.2874591. Epub 2018 Oct 8.
7
A Sparse Non-Negative Matrix Factorization Framework for Identifying Functional Units of Tongue Behavior From MRI.
IEEE Trans Med Imaging. 2019 Mar;38(3):730-740. doi: 10.1109/TMI.2018.2870939. Epub 2018 Sep 18.
8
Inverse Biomechanical Modeling of the Tongue via Machine Learning and Synthetic Training Data.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10576. doi: 10.1117/12.2296927. Epub 2018 Mar 12.
9
Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10574. doi: 10.1117/12.2293028. Epub 2018 Mar 2.
10
Variability in muscle activation of simple speech motions: A biomechanical modeling approach.
J Acoust Soc Am. 2017 Apr;141(4):2579. doi: 10.1121/1.4978420.

本文引用的文献

1
A High-resolution Atlas and Statistical Model of the Vocal Tract from Structural MRI.
Comput Methods Biomech Biomed Eng Imaging Vis. 2015;3(1):47-60. doi: 10.1080/21681163.2014.933679.
2
3D tongue motion from tagged and cine MR images.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):41-8. doi: 10.1007/978-3-642-40760-4_6.
3
Reconstruction of high-resolution tongue volumes from MRI.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24. doi: 10.1109/TBME.2012.2218246. Epub 2012 Sep 27.
4
Incompressible deformation estimation algorithm (IDEA) from tagged MR images.
IEEE Trans Med Imaging. 2012 Feb;31(2):326-40. doi: 10.1109/TMI.2011.2168825. Epub 2011 Sep 19.
5
Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing.
J Acoust Soc Am. 2007 Jan;121(1):491-504. doi: 10.1121/1.2363926.
6
Objective assessment of speech after surgical treatment for oral cancer: experience from 196 selected cases.
Plast Reconstr Surg. 2004 Jan;113(1):114-25. doi: 10.1097/01.PRS.0000095937.45812.84.
8
Morphological analyses of the human tongue musculature for three-dimensional modeling.
J Speech Lang Hear Res. 2001 Feb;44(1):95-107. doi: 10.1044/1092-4388(2001/009).
9
Imaging heart motion using harmonic phase MRI.
IEEE Trans Med Imaging. 2000 Mar;19(3):186-202. doi: 10.1109/42.845177.
10
Surgical variables affecting speech in treated patients with oral and oropharyngeal cancer.
Laryngoscope. 1998 Jun;108(6):908-16. doi: 10.1097/00005537-199806000-00022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验