Shieh Joseph T, Tintos-Hernández Jesus A, Murali Chaya N, Penon-Portmann Monica, Flores-Mendez Marco, Santana Adrian, Bulos Joshua A, Du Kang, Dupuis Lucie, Damseh Nadirah, Mendoza-Londoño Roberto, Berera Camilla, Lee Julieann C, Phillips Joanna J, Alves César A P F, Dmochowski Ivan J, Ortiz-González Xilma R
Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, CA, 94143.
These authors contributed equally to this work.
medRxiv. 2023 Jan 31:2023.01.30.23285099. doi: 10.1101/2023.01.30.23285099.
Ferritin, the iron storage protein, is composed of light and heavy chain subunits, encoded by and , respectively. Heterozygous variants in cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with heterozygous variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense variants were identified using whole exome sequencing, with a recurrent variant (p.F171*) identified in three unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminus variants in truncate ferritin's E-helix, altering the four-fold symmetric pores of the heteropolymer and likely diminish iron-storage capacity. pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of cause a novel disorder in the spectrum of NBIA. Targeted knock-down of mutant transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this novel pediatric neurodegenerative disorder.
铁蛋白是一种铁储存蛋白,由轻链和重链亚基组成,分别由 和 编码。 中的杂合变异会导致遗传性神经铁蛋白病,这是一种伴有脑铁蓄积的神经退行性疾病(NBIA)。此前, 中的变异与神经系统疾病并无关联。我们描述了5例无关的患有 杂合变异的儿科患者的临床、神经影像学和神经病理学表现。这些儿童表现出发育迟缓、癫痫和进行性神经功能衰退。通过全外显子组测序鉴定出无义变异,在3例无关个体中发现了一个反复出现的 变异(p.F171*)。神经影像学显示弥漫性体积缩小、脑桥小脑发育不全特征以及基底神经节铁蓄积。神经病理学表明大脑中存在广泛的铁蛋白包涵体。对患者来源的成纤维细胞进行铁蛋白表达、铁蓄积易感性和氧化应激检测。变异的 信使核糖核酸转录本逃避无义介导的衰变(NMD),成纤维细胞显示铁蛋白水平升高、氧化应激标志物增加以及对铁蓄积的易感性增加。 中的C末端变异截断了铁蛋白的E螺旋,改变了异聚物的四重对称孔,可能降低了铁储存能力。 致病变异似乎通过显性、毒性功能获得机制起作用。数据支持这样的结论,即 最后一个外显子中的截断变异在NBIA谱系中导致一种新型疾病。用反义寡核苷酸靶向敲低突变的 转录本可挽救细胞表型,并为这种新型儿科神经退行性疾病提示了一种潜在的治疗策略。